
TADS 3 Language Reference
A QUICK GUIDE TO THE LANGUAGE

This is a quick-reference to common language features of the TADS
3 language. For the full story, see the TADS 3 System Manual.

Literals and Datatypes
nil and true; nil is false or an empty value.
Integer: -2147483658 to +2147483647
Hexadecimal 0xFFFF
Enumerators enum red, blue, green
Property ID &myProp
List [item1, item2, item3, item4, ... itemn]
BigNumber 12.34 or 1.25e9 ; can store up to 65,000 decimal dig-
its in a value between 1032767 and 10-32767

String: a string is an ordered set of Unicode characters. A string
 constant is written by enclosing a sequence of characters in single
quotation marks: local str = 'Hello world! ';
Strings can achieve special characters including:
\" - a double-quote mark
\' - a single-quote mark
\n - a newline character
\b - a “blank” line (paragraph break)
\^ - a “capitalize” character; makes the next character capitalized
\v - a “miniscule” character, makes the next character lower case
\ - a quoted space
\t - a horixontal tab
\uXXXX - the Unicode character XXXX (in hexadecimal digits)
<.p> - single paragraph break
<q> - smart opening quote mark “ or ‘
</q> - smart closing quote mark ” or ’

Identifiers
An identifier (object, class, function, property, method or variable
name) must start with an alphabetic character or underscore followed
by zero or more alphabetic characters, underscores, or the digits 0-9.
The usual convention is that class names begin with a capital letter,
and other identifiers with a lower case letter. Note that TADS 3
identifiers are case-sensitive.

Expressions and Operators
Arithmetic/logical operators:

a + b addition
a - b subtraction
a * b multiplication
a / b division
a % b modulo (remainder)
a++ increments a by 1; evaluates to original value
++a increments a by 1; evaluates to new value
a-- decrements a by 1; evaluates to original value
--a decrements a by 1; evaluates to original value
a += b equivalent to a = a + b
a -= b equivalent to a = a - b
a *= b equivalent to a = a * b
a /= b equivalent to a = a / b
a & b bitwise AND
a | b bitwise OR
a ? b : c if a is true evaluates to b, otherwise c

Conditional expressions, return true or nil (i.e. false)

a == b a is equal to b
a != b a is not equal to b
a > b a is greater than b
a < b a is less than b
a >= b a is greater than or equal to b
a <= b a is less than or equal to b
a is in (x, y, z) a is equal to x, y or z
a not in (x, y, z) a is not x, y or z

Boolean expressions, return true or nil (i.e. false)

a && p both a and b are true (not nil or 0)
a || b either or or b is true (not nil or 0)
!a a is nil (false)

Object/class operators

x = new MyClass dynamically create a new instance
inherited invokes the method that the current method overrides
delegated OtherClass like inherited, but invokes the
corresponding method on OtherClass

Classes and Objects

To declare a class:

class MyClass: Class1, Class2, Class3...
 myProperty = 12
 myMethod(x)
 {
 myProperty = x;
 }
;

To declare an object

myObj: Class1, Class2 ...
 myProperty = 0
 myMethod(x)
 {
 myProperty = x;
 }
 myNestedObject: SomeClass { prop = 12 }
;

OR

myObj: Class1, Class2 ...
{
 myProperty = 0
 myMethod(x)
 {
 myProperty = x;
 }
 myNestedObject: SomeClass { prop = 12 }
}

Statements

Each statement is terminated by a semicolon “:”
A statement_block is a single statement or series of statements en-
closed in braces {...}.
A pair of slashes, //, starts a comment; the rest of the line is ignored.
Anything between /* and */ is also a comment.

A common statement is the assigment:
variable = expr;

Use local to declare a local variable anywhere in a code block

Flow Control
To execute statements if expr is true; optionally, to execute other
statements if expr is nil (false):
if(expr)

statement_block

if(expr)
statement_block

else
statement_block

To execute statements depending on the value of expr:
switch(expr)
{
 case value1: statement; ... statement;
 case value2: statement; ... statement;
 ...
 default: statement; ... statement;
}

Note that an explicit break statement is needed to prevent fall-
through.

Loop Control
To execute statement while expr is true:
while(expr)

statement_block

To execute statements while expr is true, executing them at least
once:
do

statement_block
while(expr);

To execute statements while a variable changes:
for(initializer; condition; updater)

statement_block

To execute statement for all objects in a list:
foreach (obj in list)

statement_block

To jump out of the current innermost loop or switch:
break;

To immediately start the next iteration of the current loop:
 continue;

Methods and Functions
To define a function:
function_name(param_name, param_name...)
{

function_body
}

To replace or modify a function:
replace someFunc(a, b)
{
 // new code here
}

A method definition looks just like a function definition, except that
it is attached to some object:
class MyClass: object
 getOwner()
 {
 // code goes here
 }
;

Shorthand method definition for a method that takes no parameters:
class MyClass: object
 getOwner = (myOwner ? myOwner.owner : nil)

Varying parameter lists:
printf(fmt,)
{
 // code goes here
}

Retrieve the nth argument with getArg(n), argcount gives the
total number of arguments.

Alternate form of varying parameter list:
printf(fmt, [lst])
{
 foreach(local x in lst)
 // do something
}

To return a value from a method or function:
return expr;

To define an anonymous function:
 new function(x) { "x = <<x>>\n"; }

To define a short-form anonymous function:
{a, b: a + b}

N.B. a semicolon is not allowed in an anonymous function.

An anonymous function may be assigned to a variable or passed as an
argument to a function call

Displaying Text
To output a list of values:
 say(value1, value2, value);

Where each value can be a string, an integer, a BigNumber, or nil.

To display a string:
 "string";

To display a string containing an embedded expression:
"string <<expr>> text";

To change font attributes:
 ... bold
<i> ... </i> italic
<u> ... </u> underline

Selected Intrinsic Functions
dataType(val) returns the data type of val as one of the
TypeXXX values.
firstObj(cls, flags?) returns the first object of class cls.
nextObj(obj, cls, flags?) returns the next object after obj of
class cls.
Use firstObj() and nextObj() together to iterate over all objects
of a certain class in the game; flags is an optional parameter which
you normally won’t need to supply.
rand(n) returns a random number between 0 and n-1
rand(val1, val2, ... valn) or rand([list]) randomly se-
lects one of the list elements and returns it.
randomize() seeds the random number generator.
toInteger(val) converts val to an integer, where val can be an
integer, string, BigNum, true or nil.
toString(val) converts val to a string.

