
Learning TADS 3

by Eric Eve

(for version 3.1)

2

Table of Contents

1 Introduction...8

1.1 The Aim and Purpose of this Manual...8

1.2 What You Need to Know Before You Start..10

1.3 Feedback and Acknowledgements...11

2 Map-Making – Rooms..12

2.1 Rooms..12

2.2 Coding Excursus 1: Defining Objects...13

2.3 Different Kinds of Room..15

2.4 Coding Excursus 2 – Inheritance...17

2.5 Two Other Properties of Rooms...18

3 Putting Things on the Map..20

3.1 The Root of All Things...20

3.2 Coding Excursus 3 – Methods and Functions...23

3.3 Some Other Kinds of Thing..24

3.4 Coding Excursus 4 – Assignments and Conditions.......................................27

3.5 Fixtures and Fittings...30

4 Doors and Connectors...35

4.1 Doors...35

4.2 Coding Excursus 5 – Two Kinds of String..37

4.3 Other Kinds of Physical Connector...40

4.4 Coding Excursus 6 – Specials Things to Put in Strings..................................46

4.5 TravelConnectors..51

5 Containment..60

5.1 Containers and the Containment Hierarchy..60
5.1.1 The Containment Hierarchy...60

5.1.2 Moving Objects Around the Hierarchy..61

5.1.3 Defining the Initial Location of Objects..61

5.1.4 Testing for Containment..63

5.1.5 Containment and Class Definitions..64

5.1.6 Bulk, Weight and Container Capacity...65

3

5.1.7 Items Hidden in Containers...66

5.1.8 Notifications..67

5.2 Coding Excursus 7 – Overriding and Inheritance...70

5.3 In, On, Under, Behind...75
5.3.1 Kinds of Container..75

5.3.2 Container Materials..78

5.3.3 Other Kinds of Containment...79

5.4 Coding Excursus 8 – Anonymous and Nested Objects..................................81

5.5 Complex Containers..83

6 Actions..88

6.1 Taxonomy of Actions...88

6.2 Coding Excursus 9 – Macros and Propertysets..91
6.2.1 Macros..91

6.2.2 Propertysets..93

6.3 Customizing Action Behaviour..94
6.3.1 Actions Without Objects..94

6.3.2 Actions With Objects...95

6.3.3 Stages of an Action..96

6.3.4 Remap ...96

6.3.5 Verify...99

6.3.6 Check...102

6.3.7 Action...103

6.3.8 Precondition..105

6.4 Coding Excursus 10 – Switching and Looping..107
6.4.1 The Switch Statement ..107

6.4.2 Loops...108

6.5 Defining New Actions..111

7 Knowledge...117

7.1 Seen and Known..117
7.1.1 Tracking What Has Been Seen..117

7.1.2 Tracking What Is Known..118

7.1.3 Revealing..120

7.2 Coding Excursus 11 – Comments, Literals and Datatypes...........................121
7.2.1 Comments...121

4

7.2.2 Identifiers...121

7.2.3 Literals and Datatypes..122

7.2.4 Determining the Datatype (and Class) of Something...........................122

7.2.5 Property and Function Pointers...123

7.2.6 Enumerators..125

7.3 Topics...126

7.4 Coding Excursus 12 – Dynamically Creating Objects..................................128

7.5 Consultables..129

8 Events...132

8.1 Fuses and Daemons..132

8.2 Coding Excursus 13 – Anonymous Functions...135

8.3 EventLists..137

8.4 Coding Excursus 14 – Lists and Vectors...143

8.5 Initialization and Pre-initialization...150
8.5.1 Initialization..150

8.5.2 Pre-Initialization...150

8.5.3 Static Property Initialization...151

9 Beginnings and Endings...153

9.1 GameMainDef..153

9.2 Version Info ..155

9.3 Coding Excursus 15 – Intrinsic Functions...156

9.4 Ending a Game...158

10 Darkness and Light..161

10.1 Dark Rooms and Light Levels..161

10.2 Coding Excursus 16 – Adjusting Vocabulary..164
10.2.1 Adding Vocabulary the Easy Way..164

10.2.2 Dictionary..165

10.2.3 ThingState...165

10.3 Sources of Light..167

11 Nested Rooms...172

11.1 Types and Characteristics of NestedRoom...172

11.2 Nested Rooms and Postures...173

5

11.3 Nested Rooms in Complex Containers..176

11.4 Staging Locations..178

11.5 Other Features of Nested Rooms...179
11.5.1 Nested Rooms and Bulk...179

11.5.2 Dropping Things in Nested Rooms...179

11.5.3 Enclosed Nested Rooms...180

11.6 Special Kinds of Nested Room...181

11.7 Nested Rooms and OutOfReach...182

12 Locks and Other Gadgets...187

12.1 Locks and Keys...187
12.1.1 Lockable..187

12.1.2 KeyedLockable...187

12.1.3 Keyring...190

12.1.4 IndirectLockable...190

12.2 Control Gadgets..191
12.2.1 Buttons, Levers and Switches...191

12.2.2 Controls With Multiple Settings...194

13 More About Actions..198

13.1 Message Properties...198

13.2 Stopping Actions...201

13.3 Coding Excursus 17 – Exceptions and Error Handling...............................203

13.4 Reacting to Actions...205

13.5 Reacting to Travel...207

13.6 NPC Actions...210

14 Non-Player Characters...212

14.1 Introduction to NPCs...212

14.2 Actors...213

14.3 Actor States...215

14.4 Conversing with NPCs – Topic Entries...219

14.5 Suggesting Topics of Conversation...228

14.6 Hello and Goodbye – Greeting Protocols...231

14.7 Conversation Nodes..235

14.8 NPC Agendas..242

14.9 Making NPCs Initiate Conversation..245

6

14.10 Giving Orders to NPCs...248

14.11 NPC Travel ..250

14.12 Afterword...253

15 MultiLocs and Collectives..255

15.1 MultiLocs...255

15.2 Collectives ..259

15.3 CollectiveGroups...260

16 Senses and Sensory Connections.......................................263

16.1 The Five Senses ...263

16.2 Vaporous and Intangible..264

16.3 Sensory Emanations..265

16.4 Sensory Events...268

16.5 Sensory Connections...272

16.6 The DistanceConnector..273

16.7 The Occluder..276

16.8 Describing Things in Remote Locations...278
16.8.1 Obscured, Remote and Distant Descriptions.....................................278

16.8.2 Distant, Obscured and Remote Object Listings..................................280

17 Attachables..285

17.1 The Attachable Framework...285

17.2 NearbyAttachable..289

17.3 Other Kinds of Attachable...291
17.3.1 PlugAttachable...291

17.3.2 PermanentAttachment...291

17.3.3 SimpleAttachable..292

18 Menus, Hints and Scoring...295

18.1 Menus...295

18.2 Hints...297

18.3 Scoring..302

19 Beyond the Basics...306

19.1 Introduction...306

19.2 Parsing and Object Resolution...306

7

19.2.1 Tokenizing and Preparsing..306

19.2.2 Object Resolution...307

19.3 Similarity, Disambiguation and Difference...310

19.4 Fancier Output..312

19.5 Changing Person, Tense, and Player Character..314

19.6 Making Use of Room Parts..316

19.7 Pathfinding and Timekeeping..318

19.8 Coding Excursus 18...319
19.8.1 Varying, Optional and Named Argument Lists...................................319

19.8.2 Regular Expressions..321

19.8.3 LookupTable...322

19.8.4 Multi-Methods..323

19.8.5 Modifying Code at Run-Time...323

19.9 Compiling for Web-Based Play..325

20 Where To Go From Here...328

21 Alphabetical Index...330

8

1 Introduction

1.1 The Aim and Purpose of this Manual

TADS 3 is an extremely powerful and versatile system for writing well-polished works
of Interactive Fiction, but at first sight it can look quite overwhelming, since there
seems to be so much to learn. TADS 3 in fact makes many common IF coding tasks
extremely easy, but there is a lot to learn, and it’s very hard to produce anything
worthwhile with it without first mastering the basics.

Several years ago, when I was still fairly new to TADS 3 and had just been struggling
to get to grips with it on the basis of the extremely limited documentation then
available, I conceived the idea of producing a guide for people like myself who had
some familiarity with Inform 6 or TADS 2 but wanted to get up to speed on TADS 3.
The result was Getting Started in TADS 3. When Mike Roberts subsequently asked if I
would be happy for Getting Started to be included in the official TADS 3
documentation set (for the official launch of TADS 3 at version 3.0.12) I was happy to
agree, and also spent some time trying to adapt Getting Started to its new role. Both
before and since then Getting Started in TADS 3 has proved helpful to many people,
but it clearly hasn’t suited everyone. The present manual was conceived as an
alternative to Getting Started for people to whom Getting Started’s approach is
uncongenial or unhelpful.

While Learning TADS 3 is still a tutorial, unlike Getting Started it is not tied to taking
the reader through the development of a sample game, and is thus free to present the
material in a far more systematic manner. It will therefore suit readers who would
prefer a more systematic treatment, or who don’t feel they will learn much by copying
the code for someone else’s game. On the other hand Getting Started may work
better for readers who would like to be taken through the development of a complete
game, or who would like more step-by-step guidance. If you’re anxious to get on with
development your own IF masterpiece, Learning TADS 3 may be the better choice for
you (and below I’ll offer a couple of suggestions on how you might like to use it in
tandem with developing your own game). If what you’re after is a gentler walkthrough
of TADS 3’s capabilities, then you may prefer Getting Started.

The writer of this kind of manual is inevitably in a no-win situation. Reader A will
complain loudly that points X, Y and Z haven’t been covered. Reader B will complain
about being overwhelmed by too much information. Reader A and Reader B may very
well be the same person at different times! This manual attempts to steer a middle
course between the complaints of these two readers by setting out what all TADS 3
users need to know, offering pointers to what many TADS 3 users will want to know,
and largely ignoring features that are likely to be used only occasionally. It also
attempts to avoid excessive repetition of material available in other parts of the TADS

9

3 documentation set, although a considerable amount of overlap has turned out to be
unavoidable. Since we all start from different places and want to write different kinds
of games, there is no one-size-fits-all ideal manual that will perfectly suit everybody.

In order to master (or even become moderately competent at) a complicated system
like TADS 3 (and TADS undoubtedly is complicated) it’s necessary to learn both about
the library (in particular the various classes that can be used to define objects in a
TADS 3 game) and the language (in particular how to go about various coding tasks).
To be sure, some people may want to find all about the language first, but such people
can read the TADS 3 System Manual. For the benefit of everyone else, this manual
intersperses information about coding (mainly from the System Manual) among the
seemingly more ‘practical’ sections on how to use the library. That way readers can
gradually acquire what they need to know about the language in the course of
learning about and trying out the more concrete aspects of game writing.

Becoming proficient at TADS 3 is not a matter of committing everything one might
possibly want to know about it to memory. The system is far too large for that
(though it is not quite so bewilderingly vast as it is sometimes made out to be).
Becoming proficient at TADS 3 is a matter of learning (through practice) those parts of
the system that one uses most commonly, while at the same time learning to use the
documentation effectively in order to look up the rest. Since effective use of the TADS
3 System Manual, the Library Reference Manual and the TADS 3 Technical Manual are
essential skills for any TADS 3 author, readers of this book will be encouraged to look
material up in these other documents from an early stage. There would, in any case,
be little or no point in reproducing large amounts of information that are perfectly well
covered elsewhere, and so throughout this book readers are referred to these other
manuals for further information. The aim is to present the basic information here and
to leave readers to find out the less common details elsewhere. This should benefit
readers in two ways: first, by helping them to become familiar with other parts of the
TADS 3 documentation, and second, by allowing the explanations offered here to be
kept relatively simple, concentrating on what is basic and central.

How readers choose to use this book is, of course, up to them. If anyone really wants
to use it as the libretto for TADS 3 – The Opera I can hardly prevent them! But
perhaps I may be permitted to offer a suggestion. Some readers may find it helpful
(perhaps after trying out an exercise or two from the first chapter) to read fairly
rapidly through the whole book without stopping to do the exercises or to look up the
suggested material in other manuals, and only then come back to work through this
book more slowly and carefully second time round, trying out all the exercises and
looking up all the other suggested material. This approach could have a number of
benefits: by enabling you to satisfy your natural curiosity about what is coming next in
the first read-through, it should help you to curb the urge to race through too quickly,
skimping on the exercises and external cross-references, when you come to read
through it second time round. It should also give you an initial overview so that when

10

you come to read this book through more carefully second time round it will be with at
least some idea of how the parts fit into the whole.

Again there’s more than one way you can use the exercises. You can, if you wish, take
them literally and try to implement exactly what they suggest (or where they refer to
sample games you could try playing the sample games and then recreating them in
your own code). Or, where the exercises suggest comparison with a sample game, you
could just give a bit of thought as to how you might implement the suggested game,
maybe jotting a few notes, and then study the source code of the sample game. Or, if
you’re primarily anxious to get on with your own game, you could try to think of
something in your own game that’s analogous to the exercise being proposed and
then go ahead and implement that, perhaps studying the source code of the sample
game when one’s suggested to get ideas for your own game. That way, you will be
able to make progress with your own game while still following this manual in a
reasonably systematic fashion.

1.2 What You Need to Know Before You Start

It is assumed that anyone reading this book has a reasonable idea of what Interactive
Fiction is, how it’s played, and what its basic conventions are, otherwise they wouldn’t
be wanting to learn how to program in TADS 3. It’s also assumed that you know the
absolute basics of compiling a game in TADS 3. If not, you should first read Parts I
and II of the TADS 3 System Manual. If you are using a Windows system you should
also start Windows Workbench and read the documentation that comes with that. And
even if you’ve chosen to use this book instead of Getting Started in TADS 3 you might
find it useful to read the section on ‘Creating Your First Project’ in Chapter 1 of Getting
Started and possibly Chapter 2 as well.

At several points in this book you’ll be invited to try writing your own (short) games.
When you start a new game you’ll need a source file that contains (at a minimum) the
following:

#charset "us-ascii"
#include <adv3.h>
#include <en_us.h>

versionInfo: GameID
 name = 'My Practice Game'
 byLine = 'by an Aspiring Author'
 version = '1'
;

gameMain: GameMainDef
 initialPlayerChar = me
;

me: Actor
 location = startRoom
;

11

startRoom: Room
 roomName = 'Starting Room'
 desc = "This is the starting room. "
;

If you don’t call your starting location startRoom, then you should change startRoom
to the name of the room where you want your game to start (you may also want to
change the name of the game and your own name in the byLine).

If you’re using Workbench, you can just use the File -> NewProject option (from the
menu) and then ask to create an “advanced” game in order to start with the skeletal
code shown above. If you’re not using Workbench you can still copy the file starta3.t
from the ..\samples directory of your TADS 3 author’s kit installation; copy starta3.t to
your working directory, rename it to something else (mygame.t, for example) and you
can use it as the basis for your own exercises.

Finally, many of the exercises contained in this manual refer to sample games you can
look at. A complete set of these sample games can be obtained from
http://www.tads.org/learning_tads3_sample_games.htm.

1.3 Feedback and Acknowledgements

Special thanks are due to Jim Aikin, Mark Engelberg and Knight Errant for pointing out
various errors in an earlier draft of this manual and making various suggestions for
improvements.

If anyone else wishes to point out errors or offer suggestions, I can be contacted on
eric.eve@hmc.ox.ac.uk.

http://www.tads.org/learning_tads3_sample_games.htm

12

2 Map-Making – Rooms

2.1 Rooms

No game can take place without a room, so the very first thing we have to learn to
define is precisely that – a room. Let’s suppose our game starts in a bedroom, so that
this is the room we want to define. It might look something like this:

bedroom: Room
roomName = 'Bedroom'
desc = "Your bed lurks in one corner, the clothes a heap from a
restless night. The only way out is to the east. "

;

Note that we have defined two properties of the bedroom object: roomName (what
the room is called) and desc (its description). These two properties are so common
that we can define a room without stipulating them explicitly, by means of what’s
known as a template. A template is simply a convenience feature of TADS 3 that lets
us define commonly-used properties without explicitly stating which properties we’re
defining; this works by defining these common properties in a particular order
(sometimes with additional symbols like + or @ or -> to identify parts of the
template). The Room template is a very straightforward one; using the room template
our room definition becomes:

bedroom: Room 'Bedroom'
 "Your bed lurks in one corner, the clothes a heap from a

restless night. The only way out is to the east. "
;

We’ve mentioned a way out to the east, so presumably that must go somewhere. Let’s
suppose is goes out to the landing. To allow movement between rooms we can define
the east property of the bedroom to point to the landing, then define a new room, the

landing, with its west property pointing back to the bedroom.

bedroom: Room 'Bedroom'
 "Your bed lurks in one corner, the clothes a heap from a

restless night. The only way out is to the east. "
east = landing

;

landing: Room 'Landing'
"The landing runs from west to east; your bedroom lies west. "
west = bedroom

;

If you compiled this game, it wouldn’t be terribly exciting, but it would at least let you
move backwards and forwards (or rather east and west) between the two rooms.

When we wrote east = landing and west = bedroom, we were adding properties to

the room which describe where the player character goes when the player attempts to

13

move in the corresponding direction. The standard directional properties available in
TADS 3 are the eight compass directions: north, south, east, west, northeast,

northwest, southeast, southwest, together with the four special directions: up,

down, in and out. In Shipboard rooms (see below) we can also use the directions

port, starboard, fore and aft.

Exercise 1: See if you can create a larger map, using the tools we have seen so far.
Traditionally people start by creating a map of their own home or place of work, and
you could do that. But by all means feel free to use your own imagination if you’d like
to try something more adventurous.

2.2 Coding Excursus 1: Defining Objects

The rooms we have been creating are examples of objects. A great deal of
programming in TADS 3 consists in defining objects. A typical object definition in TADS
3 looks something like:

objectName: ClassList
 property1 = 'some text'
 property2 = somethingElse
;

The objectName is simply a name we give to the object so that we can identify it
elsewhere in our code (for example we used the name landing which enable us to

attach the landing to the east property of the bedroom).

The ClassList is a list of one or more classes to which the object we’re defining
belongs. A class defines the kind of object it is; objects belonging to the same class
generally have quite a bit of behaviour in common, so we use classes to define that
common behaviour. So far the only class we’ve met is Room, but TADS 3 has many

other classes we can use, and we can also define our own. We’ll soon be meeting
some more.

Each object (and class) can have a number of properties. These are pieces of data
associated with the object, for example the name and desc of a Room. These pieces of

data can be of many kinds, such as strings (pieces of text), numbers, lists, and other
objects. Objects (and classes) can also have methods, but we’ll talk about them later.

In the example above the object definition is terminated with a semicolon (;). An
alternative form of object definition uses braces, like this:

objectName: ClassList
{
 property1 = 'some text'
 property2 = somethingElse
}

Some kinds of object have properties we use so often that there’s a short-cut method
of defining them, using what TADS 3 calls a template. The only template we’ve met so

14

far is that for the Room class, which defines a short-cut means of defining the

roomName and desc properties.

Templates can be a great time-saver when defining objects, but how do we know
which properties they define? One way is to look them up in the Library Reference
Manual. This is a tool all TADS 3 authors need to get to grips with sooner or later, so
we may as well start now.

Open the Library Reference Manual from the TADS 3 Bookshelf (it’s best if you can
open it in a web browser and keep it available all the time). Along the top of the LRM
you should see a row of links looking like:

Intro Classes Actions Grammar Objects Functions Macros Enums Templates all symbols

Click on the Templates link near the right hand end. The bottom left-hand frame of
the LRM should then change to a list headed with the title Templates. Scroll down the
list till you find Room, and then click on the Room link. A definition of the Room
template should then appear near the top of the main frame, looking like this:

Room

'roomName' 'destName'? 'name'? "desc"?;

For rooms, we normally have no vocabulary words, but we do have a name and description, and optionally a

"destination name" to use to describe connectors from adjoining rooms.

Anything followed by a question-mark is an optional part of the template. This tells us
that when we define a room with a template, the item in single-quote marks will be
the roomName property. If there’s a second item in single-quote marks it will be the

destName, and if there’s a third it will be the name (don’t worry about what these

mean for the moment). Whether we define the Room with one, two, or three items in
single-quoted strings, the item that appears between double-quotes will be the desc

property.

So, for example, if we defined:

auditorium: Room 'Auditorium of Albert Hall' 'the auditorium'
 "The auditorium is thronged with a great press of people. "
;

Then 'Auditorium of Albert Hall' would the roomName, 'the auditorium' would be the

destName, and "The auditorium is thronged with a great press of people. " would be

the desc. We’ll explain destName further below.

After a while, the common templates (e.g. for Room) quickly become familiar, and we

don’t need to look them up any more. Some beginners find templates a little
confusing, however, since until they become familiar it isn’t always clear what

http://index/TOC.html
http://TemplateIndex.html/
http://EnumIndex.html/
http://MacroIndex.html/
http://FunctionIndex.html/
http://ObjectIndex.html/
http://GrammarIndex.html/
http://ActionIndex.html/
http://ClassIndex.html/
http://Intro.html/

15

properties they’re defining. For that reason we’ll be careful to introduce each template
as we first use it, and to give at least one example of each new class where where the
properties are all defined explicitly. You may also find it helpful to download the
template quick-reference chart from http://www.tads.org/t3dl/TemplatesQref.zip.

For a fuller explanation of the material covered in this Coding Excursus, see the
chapter on “Object Definitions” in Part III of the TADS 3 System Manual. Note,
however, that some of the material in that chapter relates to concepts we shall be
meeting in later Coding Excursuses.

2.3 Different Kinds of Room

So far we’ve only met one kind of room, defined with the Room class. There are in fact

a number of classes of Room we can use, depending on the kind of room we want:

● Room: This kind of room comes with four walls, a ceiling and a floor as standard.

It’s the class we’d typically use to define an indoor location, a room in the
ordinary sense of the word.

● OutdoorRoom: This is like a Room, except that it has no walls, and comes with

ground and sky instead of floor and ceiling. It’s the kind of Room we’d typically

use to define an outdoor location.

● ShipboardRoom: This is just like a Room, except that we can define the

directions port, starboard, fore and aft here. We might typically use this for

cabins aboard a ship.

● DarkRoom: This a room with no light, so the player won’t be able to see

anything in it unless a light source is brought it. We could use this kind of room
for a darkened cellar or an underground cave, for instance.

● FloorlessRoom: This is a room with no floor (although it still has four walls and

a ceiling).

Although this covers several possibilities, it clearly doesn’t cover them all. It might be
dark outdoors or aboard ship for example, or we might be out on deck rather than in a
a cabin (we want shipboard directions but not a ceiling and four walls). If we have a
location representing the top of a tree, it might well be floorless, but FloorlessRoom

won’t cover it, because when we’re at the top of the tree we wouldn’t have four walls
and a ceiling either.

We can create these additional kinds of room using mix-in classes with multiple
inheritance. Multiple inheritance means that we use more than one class in the
definition of our object. A mix-in class is one that doesn’t stand on its own and has to
be mixed in with one or more other classes; whenever we define an object with
multiple classes, the mix-in class should always come first.

The mix-in classes we can use with rooms are Floorless and Shipboard. So, for

example, to define our room representing the top of a tree we might define:

http://www.tads.org/t3dl/TemplatesQref.zip

16

topOfTree: Floorless, OutdoorRoom 'Top of Tree' 'the top of the tree'
 "The ground looks a long way down from here. A branch stretches out to the
 east, just about wide enough and sturdy enough for you to crawl along. "
 down = footOfTree
 east = branch
 bottomRoom = footOfTree
 cannotGoThatWayMsg = 'Since you can\'t walk on air, that\'s not a
 practicable option. '
;

This assumes that footOfTree and branch are two other rooms we’ve defined

appropriately. Note that we’ve also introduced a new property here, bottomRoom. If we

drop something in a room, it will normally fall to the floor, but a floorless room doesn’t
have a floor, so anything dropped there will carry on falling. The bottomRoom property

defines where it will end up (in this case something dropped at the top of the tree will
fall to the foot of the tree).

Actually, we introduced two new properties. The other one is cannotGoThatWayMsg;

this is the message that would display if the player tried to go any way but east or
down from the top of the tree. Note how we use the backslash (\) immediately before
single-quote marks that we want to appear within a single-quoted string property. An
alternative would have been to use three single-quote marks to start and end the
string value:

 cannotGoThatWayMsg = '''Since you can't walk on air, that's not a
 practicable option. '''

This avoids the need to type the awkward backslash (\) character before the single
quote marks (or apostrophes) that appear in the body of the string, but the meaning
is otherwise identical. (If you find it confusing to have different ways of doing the
same thing, then you can always ignore this alternative for now).

Note also that we can use the same template for OutdoorRoom as we could for Room.

Indeed, we can use this template for all the kinds of room we’ve seen, because they
all inherit from the Room class. We’ll explain inheritance in more detail shortly.

We could define a deck aboard ship in the same way:

quarterdeck: Shipboard, OutdoorRoom 'Quarterdeck'
 "From here you can see forward into the waist of the ship. "
;

But there’s no Dark mix-in class we can use to create a dark OutdoorRoom, or a dark
version of any of the other kinds of location. For this we have to use yet another
property: brightness. For a Room the value of this property is normally either 0 (for

a dark room) or 3 (for one which is well lit). We can also use a value of 2 for a room
where there's enough light to see, but not enough to read by. A brightness of 1 is not
meaningful for a room.

17

So to create a darkened outdoor location, we could define something like the
following:

graveyard: OutdoorRoom 'Graveyard'
 "This deserted graveyard feels especially spooky by night. The gloomy
 outline of the church casts a deep shadow in the moonlight, from which
 ranks of gravestone emerge as if awaiting some signal to wake to ghostly
 life. "
 brightness = 0
;

Exercise 2: Now that we've seen more different kinds of room, try to construct a
more adventurous map using examples of each kind, and of the new properties we’ve
just seen. This might, for example, include the inside of a house and part of its
garden, or you might try to map out the cabins and decks of a yacht; or you could
even try both!

2.4 Coding Excursus 2 – Inheritance

In the previous coding excursus we showed how objects are defined, and noted that
each object definition had to contain a list of one or more classes. These are the
classes from which the object inherits. Classes can also inherit from one or more other
classes. For example, OutdoorRoom and DarkRoom both inherit from Room.

FloorlessRoom inherits from both Floorless and Room, while ShipboardRoom inherits

from the two classes Shipboard and Room. Inheriting from more than one class is

called multiple inheritance.

Classes are extremely useful when we want to define several objects (or maybe a
whole lot of objects) that basically behave alike. All rooms are basically similar: they
can contain actors and other objects; we can move from one room to another using
compass directions; when we enter a room we see its room name and its description;
all rooms can have varying levels of brightness; using the look command in a room
works in basically the same way for all rooms; and so on. It would be tedious to have
to define all this behaviour for each and every room in our game, but fortunately the
Room class does it all for us; we can just define our rooms to be of class Room and

leave the library to do all the rest. The rooms we define in our game all inherit from
the Room class.

But as we’ve also seen, there are various kinds of room, each only slightly different
from the others. An OutdoorRoom is just like a Room, except that it has no walls, and

has ground and sky in place of floor and ceiling. A ShipboardRoom is just like a Room,

except that shipboard directions (port, starboard, aft and fore) work there. It would a
lot of unnecessary work for OutdoorRoom and ShipboardRoom to define all over from

scratch the behaviour they each have in common with Room, so they inherit it all from

Room instead. Then all OutdoorRoom and ShipboardRoom have to do is to define the

ways in which they differ from Room.

18

In fact, ShipboardRoom hardly even has to do that. As we’ve seen, there’s a

Shipboard mix-in class that does the job of making the shipboard directions work, so

all we need to do is to mix the two classes together to create the ShipboardRoom

class:

class ShipboardRoom: Shipboard, Room
;

Note the use of the class keyword here when we’re defining a new class instead of a

new object. TADS 3 treats classes and objects in fairly similar ways, but there are
differences, so if we mean something to be used as a class, we should define it as a
class.

ShipboardRoom also exemplifies the value of multiple inheritance. Where we want to

combine the functionality of more than one class, we simply include all the classes we
want to inherit from in our class list (whether we’re defining an object or a new class).
For the most part we can simply define our object as inheriting from multiple classes
and leave TADS 3 to work out how all the classes will actually work together, and 99
times out of 100 we’ll get the behaviour we expect, provided we observe the one
golden rule of multiple inheritance: mix-in classes must always come first.

A mix-in class is something like Floorless or Shipboard that modifies the behaviour

of other classes but doesn’t define a full set of behaviour itself. A mix-in class is
generally any class that doesn’t (directly or indirectly) inherit from Thing. We’ll

investigate the Thing class in the next chapter.

For more information on object-orientation and inheritance read the article on “Object-
Oriented Programming Overview” in the TADS 3 Technical Manual, and the chapter on
“The Object Inheritance Model” in the Part III of the TADS 3 System Manual.

2.5 Two Other Properties of Rooms

Rooms have quite a few more commonly-used properties beyond those we’ve
mentioned so far. Quite a few of these will be mentioned in later chapters as they
become relevant, but there are two we may as well mention here.

Sometimes it’s nice to be able to give a room a different description the first time it’s
examined, perhaps emphasizing the things that first strike the player character's eye
or including a reference to how the player character came to be there (something we
shouldn’t normally do in a room description that could be repeated under other
circumstances). For this purpose we can define a roomFirstDesc (a double-quoted

string), which will be shown the first time the room is described (the desc property

being used thereafter).

When the player types an exits command a list of exits from the current location is
displayed; this includes the names of the rooms the exits lead to, provided the player
has visited those rooms. This is fine if we’ve given the room a name like ‘graveyard’,

19

since we’ll see it listed as something like ‘east, to the graveyard’, but it’s not so good if
our room name is ‘East Street’ or ‘Hall (west)’ since we’ll then see a list like ‘north, to
the east street, or south, to the hall (west)’, when it would clearly be better to see a
list like ‘north, to East Street, or south, to the west end of the hall.’ For this purpose
we can define a destName property (a single-quoted string) with the name we want to

be used when the room is shown in a list of exits, for example:

hallWest 'Hall (west)'
 "This large hall continues to the east. "
 destName = 'the west end of the hall'
;

The need to define a destName that’s different from the roomName is so common that,

as we’ve seen, we can define it as the second single-quoted string in the Room
template:

hallWest 'Hall (west)' 'the west end of the hall'
 "This large hall continues to the east. "
 east = hallEast
 roomFirstDesc = "The first thing you notice about this hall is that it
 continues to the east. "
;

20

3 Putting Things on the Map

3.1 The Root of All Things

So far the maps we’ve created have been pretty dull, since they’ve consisted purely of
empty rooms. In a real work of Interactive Fiction there’d be all sorts of objects in the
rooms. Some of them would be portable objects the player can pick up and take from
place to place, some would be fixtures like doors, windows, trees, houses and heavy
furniture, and some would be mere decorations, objects mentioned in the room
description, which can be examined but respond to any other kind of command by
telling the player that they’re not important.

The basic kind of object that’s the ancestor of all these kinds of thing is the Thing. We

use the Thing class itself for ordinary objects that the player can pick up and move

around. A typical definition of a Thing might look like:

redBall: Thing
 vocabWords = 'small red hard round cricket ball*balls'
 name = 'red ball'
 location = frontLawn
 desc = "It's quite small and hard; it looks much like a cricket ball. "
;

Since these four properties are so commonly used when defining Things (virtually

every Thing is likely to need them), it should come as no surprise that there’s a

template that can be used when defining Things. Using the template, the red ball

could be defined like this:

redBall: Thing 'small red hard round cricket ball*balls' 'red ball' @frontLawn
 "It's quite small and hard; it looks much like a cricket ball. "
;

Study this example very carefully. It applies not only to Thing but to every class that
inherits from Thing, which is likely to cover the vast majority of simulation objects
defined in any TADS 3 game. If you never get round to learning any other TADS 3
template you should learn this one. You should become so familiar with it that you
have no difficulty recognizing at sight which property is which when you see an object
defined like this. (It also helps to be just about equally familiar with the Room

template, especially if you plan on defining quite a number of rooms).

We should now consider each of these common properties in turn.

vocabWords defines the words the player can use to refer to the object in commands.

We start by listing all the adjectives the player might use to refer to the object,
separating them with spaces. We then list the nouns, separating them with slashes
(/). For example, if we thought the player might describe the red ball as a red sphere,
we might define its vocabWords as 'small red ball/sphere'. Finally we can add a plural

21

noun (or several plural nouns) following an asterisk, hence '*balls' at the end of the

vocabWords of our redBall object. The purpose of this is to allow commands like

take balls or examine balls to operate on each and every ball in scope (provided
they all have the plural 'balls' in their vocabWords property), whereas take ball or

examine ball might cause the parser to ask the player which ball is meant. Note that
an object inherits all the adjectives, nouns and plurals defined on the object or class it
inherits from in addition to any that are defined in its own vocabWords property. In

other words the vocabWords property is additive. With most properties, the code you

write will replace a property (or method) that is defined on the class, but adding new
vocabWords to an object doesn’t override existing vocabWords that are defined on the

class.

The name property defines the name of the object as it will appear in a room

description or inventory listing, e.g. "You see a red ball here" or "You are carrying a
red ball."

The desc property defines the description of the object that is displayed when the

object is examined. Note that unlike the vocabWords and name properties, which use

single quotes, the desc property always uses double quotes ("desc").

The location property defines where the object is at the start of play. For the time

being we’ll stick to locating objects in rooms, although later on we’ll see other places
they can go. Note that the location property can only be used to define the initial

location of an object. Never try to move an object by changing its location property

directly. Call its moveInto(newloc) method instead, e.g.:

 redBall.moveInto(backLawn);

But to talk of methods is to get ahead of ourselves. Instead we’ll mention a second
very common way of stipulating the initial location of an object. Instead of defining its
location explicitly, either through setting location = wherever or by using @wherever

in the template, we can put it after the object it’s located in and precede it with a plus
sign. For example:

frontLawn: OutdoorRoom 'Front Lawn'
 "The front lawn is a relatively small expanse of grass. The somewhat larger
 back lawn lies to the south. "
 south = backLawn
;
+ redBall: Thing 'red round small cricket hard ball*balls' 'red ball'
 "It's quite small and hard; it looks much like a cricket ball. "
;

Exercise 3: Add some Things to one of the maps you created earlier. Try running the
resulting game; you should be able to pick up these new objects and move them
around.

22

There are a few more things we should know about vocabWords. As we’ve seen, the

vocabWords property can contain a combination of adjectives, nouns, and plurals. The

significance of this is that to match a given Thing, the player can describe it with as
many adjectives as s/he likes, but (apart from an exception we shall look at below),
only one noun, and the adjectives must comes before the noun. So, for example, if
the vocabWords property of a given object is 'big red ball/sphere' it can be referred to

as 'ball' or 'red sphere' or 'big red ball' but not 'ball sphere'. It can also be referred to
by one or more adjectives alone, such as 'big red', but the parser will prefer a noun
match to an adjective match. That means, for example, that if we have an orange
bucket (with vocabWords = 'large orange plastic bucket', say) and an orange (the

fruit) with vocabWords = 'round juicy orange*fruit', say, then a command like x

orange will be taken to refer to the fruit rather than the bucket (when both are in
scope).

The exception to the rule that the player can’t refer to a thing with more than one
noun is when the two nouns are separated by ‘of’. For example, if we give a pair of
shoes object the vocabWords 'black pair/shoes' then the player can refer to them as

'pair of shoes' or 'pair of black shoes'.

Incidentally, this illustrates a further two points. If we’re going to give something a
name that’s plural (like ‘shoes’) we should set its isPlural property to true so that

the parser will understand what the player means if s/he uses a plural pronoun
(‘them’) to refer to the object, and also so the parser can construct grammatically
correct messages about the objects (“the shoes are here” rather than “the shoes is
here”). But is an object like ‘pair of shoes’ singular or plural? If the name property of

the object is 'pair of shoes' then we should arguably leave it as singular (we’d
probably want “the pair of shoes is here” rather than “the pair of shoes are here”), but
the player might equally refer to this object as ‘it’ (thinking of the pair) or as ‘them’
(thinking of the shoes). In this situation we can also set canMatchThem to true, which

will let the pair of shoes object match ‘them’ as well as ‘it’. In the reverse case, when
we define a plural object (with isPlural = true) that the player might refer to as ‘it’

we can define canMatchIt = true.

Normally, an object can match on any of the words in its vocabWords property. There

are occasions when we may not want a match to occur on a particular word when it’s
used alone. For example we may have so many objects in our game that are
described as ‘black’ or a ‘pair’ what we don’t want the parser to match the black pair
of shoes if either or both of the words are used without ‘shoes’. To do that we can
designate these words as weak tokens by putting them in parentheses; for the shoes
the vocabWords property might then become '(black) (pair)/shoes'. We might also do

this with the 'orange' in the orange plastic bucket, just to make absolutely sure the
bucket can never be mistaken for the fruit!

On a different matter, in the previous chapter we saw that we can give a Room a
firstRoomDesc property to describe it the first time it's seen. The analogous property

23

on Thing is initDesc. If we give something an initDesc property then this will be

used to describe it when it’s examined until the object has been moved. Or rather,
until the object’s isInInitState property is no longer true (which, by default, is until

the object has been moved). We could override this if we liked. For example, when an
object is examined its described property becomes true. So if we wanted an

initDesc to be used the first time an object is examined, we could also define

isInInitState = (!described) on the object. Note, however, that this will also

affect when initSpecialDesc (which we’ll meet a short way below) is used.

3.2 Coding Excursus 3 – Methods and Functions

In discussing how to change the location of a Thing, we introduced a method. A
method is the other kind of thing you can define on an object besides a property.
While a property simply holds a piece of data, a method contains code that’s executed
when the method is invoked (although, as we shall see, we can generally use a
method to provide a value wherever TADS 3 expects a property). A method starts with
an open brace { and ends with a closing brace }. A simple method might look

something like this:

myObj: object
 name = 'nameless'
 changeName(newName)
 {
 name = newName;
 }
;

The method has a single parameter called newName, which we can use to pass a piece

of data to the method. In general a method can take as many parameters as we like
(separated by commas), or it can have none at all. The example above is about as
simple as a method can get; it simple assigns the value of newName to the name

property of myObj, so that if some other piece of code were to execute the command:

 myObj.changeName('magic banana');

Then the name property of myObj would become 'magic banana'.

There’s a few further points to note about this example:

● Every line of code we write (something that’s meant to be executed some time)
must end with a semi-colon. Note however that this applies only to lines of code
in methods and functions, not to property declarations and the like.

● To execute a method on a particular object we write the object name, then a
dot, then the method name (hence myObj.changeName('magic banana')).

We’d refer to an object property in the same way (e.g. myObj.name).

24

A method can also return a value to its caller, using the return keyword. For example,

we might define the (admittedly trivial method):

myObj: object
 double(x)
 {

return 2 * x;
 }
;

Then if we executed the statement:

 y = myObj.double(2);

We’d end up with y being 4.

Sometimes we might want to define some code that we don’t want associated with
any particular object. In such cases we can use a function instead. To define double()
as a function we could just do this:

double(x)
{
 return 2 * x;
}

Then we could just execute statements like:

 y = double(x);

We’ll take a closer look at the kind of statements we can put in methods and functions
later. For now, if you want to know more about methods and functions, you can read
about them in the Procedural Code chapter of the TADS 3 System Manual.

3.3 Some Other Kinds of Thing

We have been introduced to the Thing class, which we can use for basic portable

objects. But there are also several special kinds of Thing – subclasses of Thing –

which we can use for special purposes. Some of the main examples include:

● Wearable – clothing the player character can put on and take off

● Food – something the player character can eat.

● Readable – something particularly suitable for reading. Normally read x

behaves exactly like examine x, but if x is a Readable and has a readDesc

property defined, then read x will display the readDesc property instead of the

normal desc property.

● Flashlight – a portable light source than can be turned on and off. We’ll be

looking at light and darkness in more detail later on, but it’s helpful to know

25

about this one to provide a means of looking around in dark rooms.

There’s also a couple of special classes we can use to hide things and make them
appear at some later point in the game:

● Hidden – an object that remains hidden from view until we call its discover()

method.

● PresentLater – an object that starts off the map but comes into play (at the

location we define it) when we call its makePresent() method. Note that

PresentLater is a mix-in class (which must therefore be used with some other

Thing based class.

These last two may become clearer with a couple of examples. Suppose the heroine’s
engagement ring has somehow become lost and has somehow got itself under the
carpet, so we need to look under carpet to find it. We might define the ring as:

+ ring: Hidden, Wearable 'diamond silver gleaming engagement ring*rings'
 'diamond ring'
 "It's a silver band with a single gleaming diamond. "
;

Then (to anticipate some features of TADS 3 we've yet to meet), we could make the
ring appear when the player looks under the carpet:

+ carpet: Immovable 'dark red carpet*carpets' 'carpet'
 "It's a plain dark red carpet."

 dobjFor(LookUnder)
 {
 action()
 {

 if(ring.discovered)
 "You find nothing else under the carpet. ";
 else
 {
 ring.discover();
 "You find a ring!";
 }
 }
 }
;

If there are parts of this example you don’t understand, don’t worry, they’ll be
covered later. The other main thing to note here is that a Hidden object has a

discovered property that tells us whether it has been discovered yet.

We could produce much the same effect using PresentLater:

+ ring: PresentLater, Wearable 'diamond silver gleaming engagement ring*rings'
 'diamond ring'
 "It's a silver band with a single gleaming diamond. "
;

26

+ carpet: Immovable 'dark red carpet*carpets' 'carpet'
 "It's a plain dark red carpet."

 dobjFor(LookUnder)
 {
 action()
 {

 if(ring.seen)
 "You find nothing else under the carpet. ";
 else
 {
 ring.makePresent();
 "You find a ring! ";
 }
 }
 }
;

Although the effect is similar, the mechanism is a little different. The Hidden ring is

present all the time, it’s simply invisible until we call its discover() method. The

PresentLater ring actually starts out off the map and is only moved to the same

location as the carpet when we look under the carpet (so that calling makePresent()

on a PresentLater sets its moved property to true, which calling discover() on a

Hidden does not). The seen property of the ring becomes true once the player

character has seen the ring. We’ll look at some of the other features of these
examples in the next Coding Excursus.

Exercise 4: Try adding some Wearable, Food and Readable objects to your map.

Also, add a Flashlight which can be used to light up a DarkRoom.

Exercise 5: To work effectively with TADS 3 you need to be able to look things up
easily in the Library Reference Manual. If you haven’t got it open already, open the
LRM now in your web browser. Click the Classes link near the top left hand corner,
then scroll down the list of classes in the bottom left-hand panel till you find Thing.

Click on Thing and take a quick look at its subclass tree; this is the complete list of all

the standard TADS 3 classes that derive from Thing. Don’t worry about trying to

understand all of them just yet! Instead just spend a bit of time looking further down
the page at the properties and methods of Thing, and then do the same with the

other classes we’ve introduced so far. Don’t worry if you can’t take it all in – you
almost certainly won’t be able to; the point is rather to get an initial feel for what’s
there and for how to use the Library Reference Manual to look up the information you
need.

27

3.4 Coding Excursus 4 – Assignments and Conditions

In the previous Coding Excursus we introduced methods and functions, which are the
two places procedural code can occur in TADS 3. One of the most common kinds of
procedural statement are assignment statements, that is statements that assign a
new value to a property or variable.

We’ve already met properties. Assigning a new value to a property (i.e. changing its
existing value to something else within a method or function) is simply a matter of
writing the property name, followed by an equals sign (=), followed by the new value
we want to assign to the property, for example:

 ring.bulk = 2;
 ring.name = 'gold ring';

If this code were executed in a method of the ring object, we wouldn’t need to specify
that it was the ring object’s properties we were referring to. In this special case we
could just write:

 bulk = 2;
 name = 'gold ring';

Assignment statement can also perform calculations:

 ring.bulk = ring.bulk + 2;
 ring.name = 'gold ' + ring.name;

In the second example, the + operator carries out string concatenation. If ring.name

previously held the value 'ring' then executing the statement ring.name = 'gold ' +

ring.name will change ring.name to 'gold ring'. In the first example the + operator

does what you’d expect; it adds 2 to the value of ring.bulk. We can also use the

other obvious arithmetic operators: - (subtract), * (multiply), and / (divide). For the
complete list of operators available in TADS 3 assignment statements, see the section
on ‘Expressions and Operators’ in the TADS 3 System Manual. These include some
neat short-cuts; for example, ring.bulk = ring.bulk + 2 can be written as

ring.bulk += 2.

As well as assigning values to properties, we can also assign them to local variables. A
local variable is simply a temporary storage area for some piece of data. A variable
can be local to a method or function, or to some smaller block of code, where a block
of code is any sequence of statements between opening and closing braces: { }. A

local variable must be declared with the keyword local the first time it’s used, and

the declaration can optionally be combined with an assignment statement, for
example:

myObj: object
 myMethod(x, y)
 {

28

 local foo;
 local bar = x + y;
 foo = bar * 2;
 return foo;
 }
;

In this method, the parameters x and y also act much like local variables within the

method. They do not have to be declared with the local keyword, since they’ve

already been declared as the method’s parameters, but like the local variables foo

and bar they are meaningful only within the context of the method.

Method calls, function calls, and assignment statements are probably the most
common kinds of statement making up the procedural code found in TADS 3 method
and functions. Often, both types of statement can occur at once, as in:

 foo = bar(x);

But there’s another kind of statement that’s almost just as important, namely flow-
control statements. Of these probably the most significant is the if statement. In

programming Interactive Fiction (as in most other kinds of programming), it’s seldom
enough just to be able to execute a set of statements in set sequence, we often need
our code to do different things depending on whether some condition is true or false.
The simplest form of an if statement in TADS 3 is:

 if(condition)
 statement;

For example, we might write:

 if(ring.weight > 4)
 "The ring feels strangely heavy. ";

Which means that if ring.weight is greater than 4, the text "The ring feels strangely

heavy." will be displayed.

We can optionally add an else clause, which defines what happens when the condition
in the if part is not true, for example:

if(ring.weight > 4)
 "The ring feels strangely heavy. ";
else
 "You pick up the ring with ease. ";

A further complication is that we might want to execute more than one statement in
the if-part or the else-part. We can do that by enclosing a block of statements in

braces, thus:

29

if(ring.weight > 4)
 {

 "The ring feels strangely heavy, so heavy that it the attempt to
 lift it drains your strength. ";
 me.strength -= 3;

 }
else

 {
 "You pick up the ring with ease. ";
 ring.moveInto(me);

 }

The conditions we can test for include

● a == b a is equal to b

● a != b a is not equal to b

● a > b a is greater than b

● a < b a is less than b

● a >= b a is greater than or equal to b

● a <= b a is less than or equal to b

● a is in (x, y, z) a is equal to x or y or z

● a not in (x, y, z) a is neither x nor y nor z

Note the distinction between a = b, which assigns the value of b to a, and a == b,

which tests for equality between a and b.

All these conditional expressions evaluate to one of two values, true or nil. The nil

value also has other uses, in contexts where it means roughly ‘nothing at all’. A value
of nil or 0 (the number zero) is treated as false, anything else is treated as true.

It can be useful to combine these logical conditions with Boolean operators. The three
Boolean operators available in TADS 3 are:

● a && b a and b – true if both a and b are true (i.e. neither nil nor 0)

● a || b a or b – true if either a or b is true (i.e. neither nil nor 0)

● !a not a – true if a is false (i.e. either nil or 0)

Finally, it’s often useful to be able to assign one value to a variable or property if some
condition is true, and another if it’s false, as in:

if(obj.name == 'banana')
 colour = yellow;
else
 colour = green;

This is so common that there’s a special conditional operator we can use to write this
sort of thing much more succinctly:

30

colour = obj.name == 'banana' ? yellow : black;

More generally, this takes the form:

someValue = condition ? valueIfConditionTrue : valueIfConditionFalse;

In the special case where we want to ensure that we assign a non-nil value to
something, we can use the if-nil operator ??. For example, suppose we have:

someValue = a ?? b;

This will assign the value b to someValue if a is nil, but will otherwise assign a to

someValue.

Together assignment statements, method and function calls, and conditional
statement make up the great bulk of procedural statement we’re likely to use in TADS
3 programming. There are others, some of which we’ll meet later. In the meantime, if
you want to get the full picture, read the section on ‘Procedural Code’ in the TADS 3
System Manual.

3.5 Fixtures and Fittings

Objects of class Thing are portable: they can be picked up, carried around the game

map, and dropped elsewhere. This is also true of the various subclasses of Thing we

met above. But many objects in a work of Interactive Fiction aren’t portable, they’re
part of the fixtures (doors, windows, trees, houses, mountains etc.) or they’re too big
and heavy to pick up (large tables, sofas, and other actors, for example).

The TADS 3 library defines a NonPortable class to cover all these kinds of thing. We

don’t in fact define any objects to be of class NonPortable, however; in a game we’d

always use one of NonPortable’s many subclasses (which we’ll look at shortly).

Nonetheless, all objects in these NonPortable subclasses have certain characteristics

in common:

● They can’t be picked up.

● They are not listed in room descriptions (unless they have a specialDesc or

initSpecialDesc property defined).

Note that we can define specialDesc and/or initSpecialDesc on ordinary portable

objects too; the initSpecialDesc will be displayed until the object has moved, and

the specialDesc used thereafter (actually the full story is slightly more complex than

that, since we can change the condition that takes an object out of its initState). For

example, we might define:

+ ring: Wearable 'diamong ring*rings' 'diamond ring'
 initSpecialDesc = "A diamond ring lies discarded on the ground. "
;

31

This would result in the ring being given a separate paragraph in the room description,
and listed as "A diamond ring lies discarded on the ground" until it’s moved. The real
point here, however, is that a NonPortable objected won’t be mentioned in a room
listing at all (because it’s assumed that it will have been mentioned in the room
description) unless it’s given a specialDesc or initSpecialDesc. For example:

+ table: Heavy 'large wooden table*tables furniture' 'large wooden table'
 specialDesc = "A large wooden table occupies the middle of the room. "
;

Since this table will (probably) never be moved, it doesn’t make any difference
whether we use specialDesc or initSpecialDesc in this latter instance.

There are two main classes of NonPortable (although these each have subclasses

too): Fixture and Immovable. The distinction between them is quite subtle, and we’re

not yet ready to say exactly what it is in technical terms yet (since we’ve yet to meet
the distinction between check and verify). But as a first approximation (which will be
good enough for most practical purposes), we’d use Fixture for things that are

obviously fixed in place (like doors, houses, trees, lamp-posts and mountains) and
Immovable for things that happen to be too large or heavy for the player character to

pick up (like large pieces of furniture or other people). The practical difference is that
the parser will consider a Fixture to be an unlikely target of a command that involves

moving (like take) before deciding what object the player’s command refers to,
whereas an attempt to move an Immovable will simply be disallowed (after the parser

has decided what object the player’s command refers to).

We can (and often will) use the Fixture and Immovable classes to define objects, but

they each have a number of subclasses. We’ll start with the subclasses of Immovable:

● CustomImmovable – This is the same as Immovable, except that we can use

one property to define the response to a number of actions (we’ll explain this
further below).

● Heavy – An Immovable that gives being too heavy as the reason why it can’t be

moved; this is useful for large pieces of furniture and the like.

● TravelPushable – An object that can’t be picked up, but can be pushed from

one room to another (with commands like push trolley north).

● UntakeableActor – An actor (animate object) that’s too large to be picked up

(a cow or horse perhaps). For human actors we use Person, a subclass of

UntakeableActor.

The explanation of CustomImmovable mentioned properties to provide responses to

certain commands. The time has come to introduce some of those properties:

● cannotTakeMsg – a message (typically given as a single-quoted string, e.g.

32

'You can't take that') shown in response to an attempt to take the object in
question.

● cannotMoveMsg – a message (again typically a single-quoted string) shown in

response to attempts to move, drop, push, pull or throw the object in question.

● cannotPutMsg – a message (again typically a singe-quoted string) shown in

response to put the object in question in, on, under or behind something.

The way these might be used (on either an Immovable or a Fixture) is illustrated by
the following example:

cabinet: Immovable 'large wooden bulky polished cabinet*furniture cabinets'
 'large wooden cabinet'
 "It's a large piece of furniture, made of polished wood. "
 cannotTakeMsg = 'The cabinet is far too bulky for you to carry around. '
 cannotMoveMsg = 'It is too heavy to move. '
 cannotPutMsg = 'You cannot put the cabinet anywhere else; it is too bulky. '
;

The point about a CustomImmovable (or, indeed, a CustomFixture), is that we can

just define the cannotTakeMsg property, then the cannotMoveMsg and cannotPutMsg

properties will automatically copy it.

Incidentally, note how we’ve defined 'furniture' as a plural noun in the vocabWords of

the cabinet object; there might be several items of furniture in the room, and if we
give them all a plural of 'furniture' then the player can refer to them collectively as
'furniture' in commands like examine furniture.

Finally, we should list some of the kinds of Fixture we can use (there are several

others, but we’ll be meeting them later):

● Component – an object that’s part of another object (for example, the handle

of a pan or a panel in a door).

● CustomFixture – the same as Fixture except that we can just define one

property, cannotTakeMsg, then cannotMoveMsg and cannotPutMsg will

automatically copy it.

● Decoration – an object that’s unimportant but mentioned in the description of

something else, so we want to provide a description of it. If the player attempts
to do anything with a Decoration apart from examining it, it will display it’s
notImportantMsg, which is typically 'The whatever is not important. '

● Distant – an object representing something that’s beyond the player’s reach,

generally because it’s a long way off, like the moon or a distant range of hills.
An attempt to do anything but examine a Distant object will result in a refusal
of the form 'The moon is too far away. '; this message can be change by
overriding the tooDistantMsg property.

33

● RoomPart – a special kind of Fixture used to define walls, floor, sky and ceiling.

There are two subclasses of RoomPart: DefaultWall and Floor. The library

also defines a number of standard RoomPart objects: defaultFloor,

defaultCeiling, defaultNorthWall, defaultEastWall, defaultSouthWall,

defaultWestWall (defined as standard on a Room), and defaultGround and

defaultSky (defined as standard on an OutdoorRoom). The list of RoomParts

associated with any Room is defined in that Room’s roomParts property. This

allows us, for example, to define a single defaultFloor object that can be used

as the floor in every Room.

● SecretFixture – a kind of Fixture used for internal implementation only and

invisible to the player (so we normally wouldn’t give it any vocabWords). If you

can’t immediately think of a use for this class, don’t worry.

● Unthing – an object used to represent the absence of something. This will

respond to any command with its notHereMsg, typically something like 'The

gold ring isn\'t here. '. This might be used, for example, to remind the player
that the gold ring has just fallen through a grating. If an Unthing and

something other than an Unthing both match the player’s command, the parser

will always ignore the Unthing.

One last point, because all these objects are ultimately subclasses of Thing, we can
(and usually will) use the Thing template with them. That means that if we define:

table: Heavy 'large round white table*tables' 'large round table'
 "It's a large round table with a white top, resting on a single pedestal. "
;

+ pedestal: Component 'stainless steel pedestal*pedestals' 'pedestal'
 "It looks as if it's made from stainless steel. "
;

Then 'large round white table*tables' and 'stainless steel pedestal' would define the
vocabWords of the two objects, 'large round table' and 'pedestal' would define their

name properties, and "It's a large round..." and "It looks as if..." would define their

desc properties. Unthing, however, has a special template of its own, since it’s

generally more useful to define its notHereMsg property:

ring: Unthing 'gold ring*rings' 'gold ring'
 'The gold ring is no longer here; you dropped it down the grating. '
;

In this example the 'gold ring*rings' and 'gold ring' are the vocabWords and name

properties as before, but 'The gold ring is no longer here; you dropped it down the
grating. ' defines the notHereMsg property (which will be used in response to any

command targeted at the ring).

34

Exercise 6: Look up the NonPortable class in the Library Reference Manual and take

a quick look at what classes it inherits from and the list of classes that inherit from it
(don’t worry about the ones we haven’t encountered yet). Spend some time exploring
its methods and properties and also those of the various subclasses of NonPortable

we’ve just been looking at above. Don’t worry about anything you don’t understand
yet, and don’t imagine that you have to commit all this information to memory; the
point of the exercise is just to get a feel for what’s there and to start learning where
to find it when you need it.

Exercise 7: Go back to the practice map you created before (or create a new one)
and add some examples of each of the various kinds of NonPortable object described

above (you can skip RoomParts and SecretFixtures).

35

4 Doors and Connectors

4.1 Doors

When we’re creating a map in a work of Interactive Fiction, we quite often want to
create doors. This may simply be for the sake of realism: rooms inside a house or
office generally do have doors between them, and it would be a strange house that
lacked a front door; or it may be because we want the door to be some kind of barrier,
preventing access to some area of the map until the player has obtained the relevant
key or solved some other puzzle. We’ll deal with doors as barriers in a later step; for
now we’ll concentrate on doors as connectors between locations.

A physical door has two sides; in TADS 3 the two sides of a door are implemented as
separate objects and then linked together. One side of the door is located in the room
the door leads from, and the other in the room the door leads to (of course the
distinction is a bit arbitrary, since TADS 3 doors, like real doors, work perfectly well
whichever way one goes through them). The two sides of the door are then linked by
setting the otherSide property of one side to point to the other side. In fact, we don’t

generally set the otherSide property directly; we set the masterObject property and

let the library take care of setting otherSide to the value of masterObject. The two

properties do have two theoretically different purposes: otherSide determines where

an actor ends up when he or she goes through the door, whereas masterObject keeps

the two sides of the door in sync when one side of the door is open or closed (or
locked or unlocked).

To implement a TADS 3 door we use the Door class. This inherits from a number of

classes, including Openable (which we’ll say more about in just a minute), and, via

ThroughPassage (which we’ll say more about a little further below), Fixture. Because

all Doors are Fixtures, it’s not possible for the player to pick them up and carry them
away, and they’re not listed separately in room descriptions (unless we give them a
specialDesc); it’s generally assumed that we’ll mention any relevant doors in the

description of the room.

The way to set up a pair of doors should become clearer with an example; suppose
the front door of a house leads out from the hall to the drive:

hall: Room 'Hall'
 "The front door leads out to the north. "
 north = frontDoor
;
+ frontDoor: Door 'front door*doors' 'front door'
;

drive: OutdoorRoom 'Front Drive'
 "The front door into the house lies to the south. "
 south = frontDoorOutside
;

36

+ frontDoorOutside: Door 'front door*doors' 'front door'
 masterObject = frontDoor
;

One important thing to notice here is that when we use a door between rooms, we
point the relevant compass properties on the rooms in question (e.g. north and

south) to the door objects and not to the rooms where the doors lead. Otherwise

players would be able to move between rooms without using the doors at all!

Note also that because a Door is a kind of Fixture, we can use the Thing template to

define its vocabWords, name and desc; but since a Door is also a kind of Passage

(which we’ll meet below), we can also assign the very common masterObject

property using -> in the template before the vocabWords property, like this:

+ frontDoorOutside: Door ->frontDoor 'front door*doors' 'front door'
;

The doors we defined above will start out closed. If we want them to start out open,
we should define initiallyOpen = true on the frontDoor (the master object).

As mentioned above, a Door is of class Openable. That means that the player can

open and close it using the open and close commands (unless it’s locked, of course,
but we’ll leave locks until a later chapter). It also means that we can test whether it’s
open or closed by looking at the value of its isOpen property. E.g.:

hall: Room 'Hall'
 desc()
 {
 "The front door stands ";

 if(frontDoor.isOpen)
 "open";

 else
 "closed";

 "to the north. ";
 }
 north = frontDoor
;

We could in fact produce this effect with much briefer code, but it demonstrates the
principle (and also demonstrates that the desc property can be a more complex

method and not just a double-quoted string).

Note that although we can test the value of the isOpen property, we should never try

to change it directly (with a statement like isOpen = true;), either on a Door or on

any other Openable object (since doing so would be liable to break the mechanism

that keeps both sides of the same door in sync). Instead we should use the
makeOpen() method; makeOpen(true) to open something and makeOpen(nil) to close

it.

37

Exercise 8: Add some doors to the map you’ve been building (or make a new map
and put some doors in it). Observe what happens when you try to make the player
character go through a closed door without explicitly opening it first.

4.2 Coding Excursus 5 – Two Kinds of String

So far we’ve been using double-quoted and single-quoted strings without explaining
what the difference is between them, apart from simply stating that some properties
need to use single-quoted strings and other properties need to use double-quoted
strings. The time has come to explain the difference.

In a nutshell, it’s this: a single-quoted string is a piece of textual data, while a double-
quoted string is an instruction to display a piece of text on the screen.

The difference can be illustrated by the following fragment of code:

myObj: object
 myMethod()
 {
 name = 'elephant water';
 "That smells unpleasant! ";
 }
 name = 'green pea'
;

When the myMethod method of myObj is executed, the name property (of myObj) is

changed to 'elephant water' and the text "That smells unpleasant!" is displayed on the
screen.

We can also display the value of a single-quoted string on the screen by using the
say() function:

myObj: object
 myMethod()
 {
 name = 'elephant water';
 say('That smells unpleasant! ');
 say(name);
 }
 name = 'green pea'
;

Note, by the way, how we generally leave a spare space at the end of a string that we
plan to display; that's to ensure that if another piece of text is displayed immediately
after it we have proper spacing between the two sentences.

But to return to the distinction between single and double-quoted strings, the
apparent exception to the rule that a single-quoted string is a piece of data, while a
double-quoted string is an instruction to display something is that many object
properties (such as desc and specialDesc) are defined as double-quoted strings. But

this anomaly is more apparent than real. Perhaps the best way to explain it is to say

38

that a property defined as a double-quoted string is effectively a short-hand way of
defining a method that displays that string; so for example:

 desc = "A humble abode, but mine own. "

is exactly equivalent to defining:

 desc() { "A humble abode, but mine own. "; }

or indeed:

 desc() { say('A humble abode, but mine own. '); }

And indeed, wherever any TADS 3 documentation suggests that we need to define an
object property as a double-quoted string, it’s always perfectly legal to define a
method (which can be as complicated as we like) that displays something. (Actually,
this is a slight oversimplification, since there are a few situations in which TADS 3
treats a double-quoted string property a little differently from a method, but the
above account will serve as a first approximation).

Similarly whenever any TADS 3 documentation suggests that we need to define a
property containing a single-quoted string, it’s always perfectly legal to define a
method (which can be as complicated as we like) that returns a single-quoted string;
e.g.:

 name()
 {
 if(weight > 4)
 return 'heavy ball';
 else
 return 'light ball';
 }

Although we can define the initial value of a property to be a double-quoted string, we
can’t go on to change that property to be another double-quoted string (or anything
else for that matter), at least, not in the obvious way. The following code is illegal:

 changeDesc()
 {
 desc = "It's a great big heavy ball. "; // DON'T DO THIS!
 }

There is a way to change the value of a double-quoted string property; it can be done
like this:

 changeDesc()
 {
 setMethod(&desc, 'It\'s a great big heavy ball. ');
 }

But the need to resort to this kind of thing will probably be rare, especially when

39

you’re just starting out in TADS 3, so for the moment we’ll just note the possibility
and move on.

On the other hand, it’s always perfectly okay to change the value of a single-quoted
string property. We can also manipulate single-quoted strings in all sorts of other
ways. For example:

 name = 'black ' + 'ball';
Changes the value of name to 'black ball'. We can also write:

 name += ' pudding';

To append ' pudding' to the end of whatever was in name. Other things we can do with

single-quoted strings include:

● str1.endsWith(str2) – tests whether str1 ends with str2 (e.g. if str1 is

'abcdef' and str2 is 'def' this will return true).

● str1.startsWith(str2) – tests whether str1 starts with str2 (e.g. if str1 is

'abcdef' and str2 is 'abc' this will return true).

● str.length() returns the number of characters in str (e.g. if str is 'abcdef'

this would return 6).

● str1.find(str2) tests whether the string str2 occurs within the string str1,

and if so returns the starting position of str2 within str1 (e.g. if str1 is

'antique dealer' then str1.find('deal') would return 9 while

str.find('money') would return nil).

● str.toUpper() returns a string with all the characters in str converted to

upper case (e.g. 'Fred Smith'.toUpper returns 'FRED SMITH').

● str.toLower() returns a string with all the characters in str converted to

lower case (e.g. 'Fred Smith'.toLower returns 'fred smith').

● str.substr(start) returns a string starting at the start character of str and

running on to the end of the string (e.g. if str is 'blotting paper' then

str.substr(5) would return 'ting paper').

● str.substr(start, length) returns a string starting at the start character of

str and continuing for no more than length characters (e.g. if str is 'blotting

paper' then str.substr(5,4) would return 'ting').

For a full list of the methods available for manipulating single-quoted strings, see the
“String” chapter under in Part IV of the TADS 3 System Manual.

It may seem that while we can manipulate a single-quoted string in all sorts of ways,
if we want to manipulate the contents of a double-quoted string then we’re out of
luck. That’s almost true – after all a double-quoted string is basically an instruction to
display something, not a piece of data – but there is a little trick we can use to

40

convert a double-quoted string to a single-quoted one,. For example, suppose we
wanted to do something with the desc property of some object; we can use code like

this to recover the single-quoted string equivalent of the desc property:

 local str = getMethod(&desc);

Note the ampersand (&) which is needed before the property name (desc) here;
techncially speaking &desc is a property pointer. If that doesn’t mean much to you

right now, don’t worry; just remember you need to use the ampersand before the
property name in this kind of situation. Note also that getMethod() will only do what

you want in this situation if the desc property has been defined as a double-quoted

string rather than a method (this is one of the few situation in which it makes a
difference). If the desc property (or whatever property it is you’re interested in)

might contain a method, you’re better off capturing its single-quoted string equivalent
with:

 local str = mainOutputStream.captureOutput({: desc });

We’re then free to do whatever we like with str (which now contains the same

characters as desc, but in a single-quoted string). If we want we can even set desc to

the new value of str once we’ve finished manipulating it:

 setMethod(&desc, str);

4.3 Other Kinds of Physical Connector

It’s quite common for a door to lead from one location to another, but doors are not
the only kind of physical connection that can do this. Other examples include
stairways, paths and passages, and TADS 3 has classes to model all of these.

The base class for all these kinds of connector is Passage. We use Passages in the

same way we use Doors; that is we define one end of the Passage in one location,

and the other end in the other location. We then link the two ends of the Passage by

setting the masterObject property of one (not both) of the two Passage objects to

the other Passage object. Finally, we make sure that the relevant directional

properties in the two rooms point to the Passage objects. We have already seen an

example of that in the way Doors are set up.

It’s unlikely that we’ll want to use the Passage class directly in a game; we’re more

likely to want to use one of its subclasses. These are:

● Stairway – A Stairway is something we can climb up or down. We typically

won’t use the Stairway class itself, but rather its two subclasses: StairwayUp

and StairwayDown. In a typical set up we use a StairwayUp at the lower end

and a StairwayDown at the upper end. Although we can (and often will) use

41

these classes for flights of stairs, we can also them for anything that an actor
might climb up and down, such as hillsides, trees and masts.

● ThroughPassage – This is a passage that an actor can go through with an

enter or go through command. We might typically use this for passages,
corridors and tunnels.

● Door – We’ve already discussed Doors above; in essence they’re a kind of

ThroughPassage that can also be opened and closed.

● AutoClosingDoor – A kind of Door that automatically closes after someone has

gone through it.

● SecretDoor – An object that acts as a Door but doesn’t look like a door until it’s

opened, for example a bookcase that can be opened to reveal a secret passage
behind.

● HiddenDoor – An object that acts as a Door but is not even visible until it’s

opened, for example a seamless panel in a wall.

● ExitOnlyPassage – An object that represents the exit from a passage that can

only be traversed in one direction, for example the bottom end of a chute.

● PathPassage – An object representing one end of a path, street, road or other

unenclosed passage that one would think of travelling along rather than
through. We can go along such passages with commands such as follow path
or take path.

All these classes are used to represent physical objects at both ends of the
connection, the kinds of object that would typically be listed in a room description but
not listed separately, for example “A broad flight of stairs leads up to the east” or “A
narrow passage leads off to the south” or “A path runs southwest round the side of
the house”. They are particularly useful when we want an object to represent these
kinds of connection between locations without wanting to implement them as locations
in their own right (perhaps nothing interesting happens in the passage, so we don’t
actually want a passage room). A further example might help to illustrate their use:

cellar: Room 'Cellar'
 "This cellar is mainly empty apart from a pile of useless junk in the
 corner. The only way out is back up the stairs. "
 up = cellarStairs
;

+ cellarStairs: StairwayUp ->hallStairs 'stairs' 'stairs'
 isPlural = true
;

+ junk: Decoration 'useless pile/junk' 'pile of useless junk'
 "The accumulated rubbish of decades. "
 notImportantMsg = 'None of it is of any conceivable use. '
;

42

hall: Room 'Hall'
 "The hall is large and bare. A flight of stairs leads down to the south,
 and a long passage leads off to the west. "
 south = hallStairs
 down asExit(south)
 west = hallPassage
;

+ hallPassage: PathPassage 'long passage' 'long passage'
 "The long passage leads off to the west. "
;

+ hallStairs: StairwayDown 'flight/stairs' 'flight of stairs'
;

kitchen: Room 'Kitchen'
 "This is pretty typical kitchen, if a little old-fashioned. A long passage
 leads off to the east. "
 east = kitchenPassage
;

+ kitchenPassage: ThroughPassage ->hallPassage 'long passage' 'long passage'
;

There are a few extra points to note here. First, note that the definition of the
cellarStairs object includes the line isPlural = true. Since ‘stairs’ is plural this

ensures that any library message referring to this object treats them as plural, e.g.
“You can’t take those” rather than “You can’t take that.”

Second, note that in the definitions of the junk and hallStairs objects the

vocabWords don’t include the word ‘of’ even though the player might well refer to

them as ‘pile of junk’ or ‘flight of stairs’. This is because the parser will automatically
recognize a phrase like ‘X of Y’ as referring to an object provided that X and Y are
both defined as nouns in that object’s vocabWords property.

Third, note the use of asExit() in the definition of the hall. This allows two or more

exits (in this case south and down) to behave in the same way with only one of them
being listed in the exit-lister. In this case the player might reasonably type either
down or south to go down the stairs, so we want both to work, but we wouldn’t want
both down and south to appear in the list of exits, since this might mislead the
player into supposing they were two separate exits.

There are four more classes (all subclasses of TravelConnectorLink) that at first

sight look rather like the kinds of connector we’ve just been discussing, but are in fact
something a little different. These are:

● Enterable – an object that exists in one location, and which can be entered to

take an actor to another location. Enterables are used for things such as the

outsides of buildings, so that the building can have a presence on its outside
and can be entered via a command like go into building.

● EntryPortal - this is just like an Enterable, except that go through also

43

works on it. We might typically use it for things like archways and doorways.

● Exitable – this is like an Enterable, except that you exit it rather than enter

it. This can be used for objects representing the current location as an
enclosure (such as a jail cell), or an exit door.

● ExitPortal – this is just like an Exitable, except that go through also works

on it. It might be used for a doorway or an archway leading out of somewhere.

There are four important differences between these four classes and the Passage-type

connectors we looked at previously:

1. Passage-type connectors are always used in pairs, with one in each of the two

locations being connected, whereas TravelConnectorLink objects can be and

generally are used singly.

2. One of the two Passage-type connectors in a pair must always be linked to the
other via its masterObject property. TravelConnectorLinks are never linked

in this way even if we happen to define one in both of the connected rooms.

3. Where a Passage leads is determined by its masterObject property (which

indirectly identifies the location of the other end of the Passage). Where a
TravelConnectorLink leads to is determined by its connector property, which

defines the TravelConnector (which may simply be a room) that will actually

be used when an actor enters, exits, or goes through the TravelConnectorLink

object.

4. If we define a Passage type object (or, more generally, a TravelConnector-

type object, which we’ll be discussing below), we should always point the
appropriate direction property of its room to it. We never do this with
TravelConnectorLink objects.

The possibility for confusion is further increased for newcomers to TADS 3 by the fact
that the TravelConnectorLink template looks just like the Passage template; they

both start with an object preceded with ->. But whereas the -> part of the template

defines the masterObject property of a Passage, it defines the connector property of

a TravelConnectorLink.

Probably the most commonly used of the TravelConnectorLink classes is Enterable,

so we’ll use this class to illustrate all this. Suppose we are defining a front drive
location which mentions a large house to the south. Without using any templates at
all, our definition might look like this:

frontDrive: OutdoorRoom
 roomName = 'Front Drive'
 desc = "The drive is impressive, but not half as impressive as the large
 Georgian house that stands directly to the south. "
 south = frontDoor
;

44

+ house: Enterable
 connector = frontDoor
 vocabWords = 'large georgian house/building'
 name = 'large Georgian house'
 desc = "It has a white-painted front door. "
;

+ frontDoor: Door
 masterObject = frontDoorInside
 vocabWords = 'front white painted white-painted door*doors'
 desc = "It has been painted white. "
;

Using templates, this becomes:

frontDrive: OutdoorRoom 'Front Drive'
 "The drive is impressive, but not half as impressive as the large
 Georgian house that stands directly to the south. "
 south = frontDoor
;

+ house: Enterable ->frontDoor 'large georgian house/building'
 'large Georgian house'
 "It has a white-painted front door. "
;

+ frontDoor: Door ->frontDoorInside
 'front white painted white-painted door*doors'
 "It has been painted white. "
;

It may seem that in some cases you could use either Passages or
TravelConnectorLinks to produce the same effect, and this is in fact the case. From

the player’s point of view the following two examples would behave identically. Using
TravelConnectorLinks:

hall: Room 'Hall'
 "A long passage leads off to the south. "
 south = kitchen
;

+ hallPassage: EntryPortal ->kitchen 'long passage/corridor' 'long passage'
 "It leads off to the south. "
;

kitchen: Room 'Kitchen'
 "A long passage leads off to the north. "
 north = hall
;

+ kitchenPassage: EntryPortal ->hall 'long passage/corridor' 'long passage'
 "It leads off to the north. "
;

And the same example using Passages:

45

hall: Room 'Hall'
 "A long passage leads off to the south. "
 south = hallPassage
;

+ hallPassage: ThroughPassage ->kitchenPassage 'long passage' 'long passage'
 "It leads off to the south. "
;

kitchen: Room 'Kitchen'
 "A long passage leads off to the north. "
 north = kitchenPassage
;

+ kitchenPassage: ThroughPassage 'long passage' 'long passage'
 "It leads off to the north. "
;

Actually, if you tried compiling and running these two examples you might just find
one small difference between them. In the second case if the player typed go
through passage followed by examine it the parser would recognize that it should
now refer to the other side of the passage, and would display an appropriate
description. If you did this with the first example, however, the parser would think
that it still referred to the EntryPortal in the room that player character had just left,

and so would display a message saying that it no longer referred to anything present.
To use the technical vocabulary of the TADS 3 library, the library automatically
recognizes that the two ends of a Passage are facets of the same physical object and

will resolve pronouns accordingly, but there’s no such recognition in the case of
TravelConnectorLinks, which are taken to be physically distinct objects. We could fix

this if we wanted to by using the getFacets property of each EntryPortal to point to

the other EntryPortal like this:

hall: Room 'Hall'
 "A long passage leads off to the south. "
 south = kitchen
;

+ hallPassage: EntryPortal ->kitchen 'long passage/corridor' 'long passage'
 "It leads off to the south. "
 getFacets = [kitchenPassage]
;

kitchen: Room 'Kitchen'
 "A long passage leads off to the north. "
 north = hall
;

+ kitchenPassage: EntryPortal ->hall 'long passage/corridor' 'long passage'
 "It leads off to the north. "
 getFacets = [hallPassage]
;

But this is more work, and correctly suggests that in this particular kind of situation

46

(representing a passage between two locations) we’re really better off using Passages

rather than TravelConnectorLinks. As we’ll see below, there are even more reasons

for preferring Passages in this situation, since they make it easier to do a number of

things we can’t so readily do with TravelConnectorLinks.

Exercise 9: Now that we’ve covered both Passages and TravelConnectorLinks, look

up both these classes in the Library Reference Manual. Take a look at the properties
and methods they define, and also the list of their subclasses. Then use the Library
Reference Manual to explore these subclasses.

Exercise 10: Add some Passage and TravelConnectorLink objects to your practice
map (or create a new map for the purpose). Compile your game and try it out to
make sure that everything works as you expect.

4.4 Coding Excursus 6 – Specials Things to Put in Strings

It may have occurred to you that there’s a problem with putting a single-quote mark
(or apostrophe) inside a single-quoted string, since if we write something like:

 local var = 'dog's dinner'; // THIS IS WRONG

The apostrophe in "dog's dinner" will look like the termination of the string, and the
code simply won’t compile. We get round this problem in one of two ways. The first is
by using an escape character, that is a character that warns the compiler to treat the
character that follows it in a special way. In TADS 3 the escape character is the
backslash (\). This lets us include a single-quote (or apostrophe) in a single-quoted
string by preceding it with a backslash:

 local var = 'dog\'s dinner'; // but this is fine

We can similarly use the backslash to include a double-quote mark in a double-quoted
string:

 "\"Right,\" says Fred. \"That's quite enough of that, I think!\"";

Note that in this case there’s absolutely no need to escape the apostrophe in “That's”
because it occurs inside a double-quoted string (although it won’t do any harm if we
do escape it by preceding it with a backslash).

The alternative is to use treble-quoted strings, like this:

local var = '''dog's dinner''';
""""Right," says Fred. "That's quite enough of that, I think!"""";

Note that in the second example we have four double-quote marks in a row. Three of
them mark the beginning and end of the string; the fourth is the double-quote mark
we want displayed in the string.

47

There are a few other characters that have a special meaning when preceded by a
backslash. Here’s the complete list:

● \" - a double quote mark.

● \' - a single quote mark (or apostrophe).

● \n – a newline character.

● \b – a "blank" line (i.e. paragraph break).

● \^ - a "capitalize" character; makes the next character capitalized.

● \v - a "miniscule" character; makes the next character lower case.

● \ - a quoted space (useful if we want to force a certain number of spaces

despite the output formatters well-meaning attempts to tidy them up for us).

● \t – a horizontal tab.

● \uXXXX – the Unicode character XXXX (in hexadecimal digits)

There are also a number of special characters we can use in both single- and double-
quoted strings:

● <.p> - single paragraph break

● <.p0> - cancel paragraph break

● <./p0> - cancel <.p0>

● <q> - smart typographical opening quote ‘ or “

● </q> - smart typographical closing quote ’ or ”

These require a few words of further explanation. At first sight <.p> may appear to do

the same thing as \b, but there is a difference. A run of multiple \b characters will

produce multiple blank lines, whereas a run of consecutive <.p> tags will produce only

a single blank line. This means, for example, we can end one string with <.p> and

begin another with <.p> knowing that we’ll only get one blank line between them

even if the second is displayed directly after the first. The zero-spacing paragraph (or
‘paragraph-swallowing tag’) <.p0> suppresses any paragraph break that immediately

follows. We can use it at the end of a string to force the next string to be displayed
directly after it without a paragraph break even if the next string starts with <.p>.

Finally, we can use <./p0> at the start of a string to force a paragraph break even if

the immediately preceding string ended with a <.p0>.

The smart typographical tags <q> and </q> work by alternating between double and

single quotation marks. So for example, if we included the following in our code:

 "<q>Right,</q> Fred declares. <q>That's quite enough <q>clever</q>
 talk for now.</q> ";

48

What we’d see displayed is:

 “Right,” Fred declares. “That's quite enough ‘clever’ talk for now.”

This is useful, but not entirely problem-free. For one thing, the straight apostrophe (')
in "That's" now looks badly out of place. This can be cured by including Stephen
Granades’s cquotes extension in your project (this extension comes with TADS 3; you
should find it under ../lib/extensions under the directory where TADS 3 is installed on
your system). A less immediately obvious problem is that in a conversation-heavy
game it’s almost inevitable that we’ll miss out a <q> or a </q> somewhere, and once

that happens the ‘smart’ quotes will thereafter start doing the opposite of what we
want. Of course this can often be cured with sufficiently diligent debugging, or with
sufficient ingenuity, by writing your own output filter to keep track of smart quotes,
but what some TADS 3 authors prefer to do is to define their own typographical quote
tags, for example:

dquoStyleTag: StyleTag 'q'
 openText = '“'
 closeText = '”'
;

squoStyleTag: StyleTag 's'
 openText = '‘'
 closeText = '’'
;

With those style tags defined (don’t worry if you don’t fully understand how they
work, for now you can just copy them into your code) you can use <.q> and <./q>

knowing that they will always produce typographical (curly) opening and closing
double-quotes, and <.s> and <./s> knowing that they’ll always produce opening and

closing typographical single quotes. Whether you prefer this to using <q> and </q> is

up to you.

It’s also worth mentioning that TADS 3 will convert a pair of dashes (--) in textual
output to an n-dash , and three successive dashes to an m-dash.

Another special kind of thing we can put inside strings is HTML markup (or that
version of HTML markup that TADS 3 recognize). For a full account, see Introduction
to HTML TADS (which is part of the standard TADS 3 documentation set). Some
commonly used HTML tags are:

● ... - display text in bold

● <i> ... </i> - display text in italics

● <u> ... </u> display text underlined

● ... - display text in red.

● <a> ... display text as a hyperlink.

What the last of these actually does depends on what we put in the href parameter of

49

the opening <a> tag. We can make it display a web page or any of other things

hyperlinks normally do, but the most common use in a TADS 3 game is to make it
execute a command. For example, if the following statement were executed.

 "You could go north from here. ";

Then the player would see something like the following on screen:

 You could go north from here.

If the player then clicked on the north hyperlink, the command 'go north' would be
copied to the command line and executed. This is so useful that TADS 3 defines a
special function, aHref(), which helps us set this up. Instead of using the explicit HTML
markup as in the previous example, we could obtain the same effect with:

 "You could go <<aHref('go north',' north')>> from here. ";

Or even with:

 "You could go <<aHref('go north',' north', 'Go north')>> from here. ";

Which would cause the explanatory text 'Go north' to be displayed in the status bar at
the bottom of the interpreter window when the player hovers the mouse over the
hyperlink.

If you are planning for your game to be played over the web, you should always use
aHref() rather than the <a> tags, since the latter will have there normal

meaning when displayed in a browser (as a hyperlink to another web page, not a
clickable shortcut to execute a command).

The above example introduces the final kind of special thing we can put inside strings,
namely the special << >> syntax (from TADS version 3.1.0 onwards these can be put

in both double- and single-quoted strings; previously they were only allowed in
double-quoted strings). This is known as an embedded expression since it allows us to
‘embed’ (i.e. include) an expression inside a double-quoted string. If the expression
evaluates to a single-quoted string, or displays a string, then that string will be
displayed at that point. If the expression evaluates to a number, then the number will
be shown. It’s not actually necessary for the expression to evaluate it to anything at
all; it’s perfectly legal (and often useful) for the embedded expression to be a function
or method that we use at that point for its other effects (changing the game state in
some way).

A typical use of the embedded expression syntax is in conjunction with the ?:

conditional operator, for example:

hall: Room 'Hall'
 "The front door lies <<frontDoor.isOpen ? 'open' : 'closed'>> to the
 north. "
 north = frontDoor
;

50

But we could equally well embed a call to a method, property or function, e.g.:

hall: Room 'Hall'
 "The front door lies <<frontDoor.openDesc>> to the north. "
 north = frontDoor
;

Strictly speaking, this doesn’t do anything we couldn’t do without it, since the
previous example could be written as either:

hall: Room 'Hall'
 desc()
 {
 "The front door lies;
 say(frontDoor.openDesc);
 "to the north. ";
 }
 north = frontDoor
;

Or:

hall: Room 'Hall'
 desc()
 {
 say ('The front door lies' + frontDoor.openDesc + 'to the north. ');
 }
 north = frontDoor
;

But using the embedded expression is obviously more convenient. Indeed, it is so very
convenient that it’s a very frequently used feature of TADS 3.

Note that we can’t directly embed one << >> expression inside another, though we

can do so indirectly (that is, it’s perfectly legal for a << >> embedded expression to

call a function or method that itself displays a double-quoted string using a << >>

embedded expression).

In addition to embedding expressions, the << >> syntax can be used to vary text in

other ways. We can, for example, vary the text displayed using an <<if>> <<else

if>> <<else>> <<end>> construction such as:

hall: Room 'Hall'
 "The front door lies <<if frontDoor.isOpen>>open<<else>>closed<<end>>
 to the north. "
 north = frontDoor
;

We can also use various kind of <<one of>> ... <<or>> constructions to vary

snippets of text randomly or cyclically, for example:

51

multiColouredCrystal: Thing 'multi-coloured crystal' 'multi-coloured crystal’
 "As you glance at the crystal it seems to sparkle <<one of>>red<<or>>blue
 <<or>>green<<or>>orange<<or>>purple<<at random>>. “
;

For a complete account of the << >> constructs you can use in strings (and for further

details of everything else we have covered in this section), see the String Literals
chapter in the TADS 3 System Manual.

Although you can use << >> embedded expressions in single-quoted strings, there

are one or two cases where they may not do exactly what you expect. For example,
you should be aware of the difference between the property declaration:

ball: Thing 'ball' 'ball’
 "It's round, as most balls are, and looks <<colour>>. "
 colour = '<<if isDirty>>a kind of muddy brown<<else>>bright red<<end>>'
 isDirty = true
;

And the similar-looking property-assignment statement:

 ball.colour = '<<if isDirty>>a kind of muddy brown<<else>>bright
 red<<end>>';

In the former case (the property declaration), the single-quoted string is evaluated
every time the colour property is accessed, with the result that when ball.isDirty

changes from true to nil, the change will be dynamically reflected in the description

of the colour of the ball. In the latter case (the assignment statement) the string
expression will be evaluated only once, at the point when the assignment is made,
with the result that a string constant will be stored in the property ball.colour. In

this latter case, the description of the colour of the ball will not change when the value
of ball.isDirty is changed.

Provided you keep this distinction in mind, using embedded << >> expressions in

single-quoted strings should be perfectly safe. In most cases, they will do what you
want. More vexing cases can occur when embedded expressions are used in single-
quoted strings that are elements of an EventList, but we’ll worry about that when we
come to EventLists.

4.5 TravelConnectors

We’ve already seen that a Door is a special kind of Passage. As it so happens, a

Passage is a special kind of something else, namely a TravelConnector. All the kinds

of TravelConnector we’ve so far have been physical objects (doors, paths, stairs,

corridors and the like), but it’s perfectly possible (and often useful) to employ abstract
TravelConnectors to control travel from one location to another even when there’s

no such physical object involved. The common reasons for wanting to do this are:

52

● carrying out some side-effect of travel, such as displaying a message describing
the travel.

● imposing some condition that determines whether or not the travel is to be
allowed, e.g. the player might be able to squeeze through the narrow passage
by himself, but not when he’s carrying the bulky box or pushing the large
trolley.

Except when the player character (or any other actor) is transported round the map
by authorial fiat (e.g. using me.moveIntoForTravel(someDestination)), travel round

a TADS 3 game map is always via a TravelConnector. Whenever the player enters a

movement command, whether it be a compass direction like north or southwest, or
a command like climb stairs or go through red door, the library first determines
what the relevant TravelConnector is and then translates the player’s command into

TravelVia conn (where conn is the TravelConnector in question). This action in turn

works out what the destination of the TravelConnector is and then moves the actor

there (the full process is actually a bit more complicated than that, but the simple
explanation will do for now).

A seeming exception to the rule that travel is always via a TravelConnector is where a
directional property points directly to another room, e.g.:

hall: Room 'Hall'
 "The kitchen lies to the south. "
 south = kitchen
;

kitchen: Room 'Kitchen'
 "The hall lies to the north. "
 north = hall
;

But the exception is only an apparent one, since Rooms are also TravelConnectors.

That is, TravelConnector is one of the several classes from which Room inherits. A

Room is a TravelConnector that always leads to itself.

TravelConnector defines a number of methods (and properties). The three most

important ones to know about are:

● canTravelerPass(traveler) – determines if the traveler is allowed to pass

through this TravelConnector (return nil to disallow travel or true to allow

it).

● explainTravelBarrier(traveler) – if canTravelPass() prevents travel, this

method is used to display a message explaining why the traveller can’t pass.

● noteTraversal(traveler) – carry out any side effects of the travel, e.g. by

displaying a message describing it.

Some additional methods and properties it’s also quite useful to know about are:

53

● connectorStagingLocation – the place an actor needs to be before travelling

via this TravelConnector (this won’t make much sense till we come to look at

NestedRooms).

● isCircularPassage – if this is true then the travel will be described even if it

leads back to its starting point; otherwise such circular travel won’t be treated
as real travel.

● isConnectorListed – determines whether this TravelConnector is to be listed

in any list of exits.

● travelBarrier – a single TravelBarrier object, or list of TravelBarrier

objects, that applies to this TravelConnector (we’ll say more about

TravelBarriers below).

● getDestination(traveler, origin) – determines where this

TravelConnector leads to. Most subclasses of TravelConnector define this in

a way that effectively looks after itself.

There are other methods and properties besides; if you want the full story look up
TravelConnector in the Library Reference Manual.

Since Passage is a kind of TravelConnector, we can illustrate some of these methods

on the kind of Passage objects we’ve already seen:

cave: Room 'Cave'
 "A narrow tunnel leads south. "
 south = narrowTunnel
;

+ narrowTunnel: ThroughPassage 'narrow passage*passages' 'narrow passage'
 "It looks only just wide enough for you to squeeze through. "

 canTravelerPass(traveler)
 {
 return !bigHeavyBox.isIn(traveler);
 }

 explainTravelBarrier(traveler)
 {
 "You'll never get through the narrow passage carrying that big heavy
 box! ";
 }

 noteTraversal(traveler)
 {
 "You just manage to squeeze through the narrow tunnel. ";
 }
;

We’re unlikely to use the TravelConnector base class itself, but we should now

become acquainted with its other subclasses, each representing some kind of non-
physical connection between rooms:

54

● RoomConnector – connects two Rooms together (the rooms being specified in

the room1 and room2 properties of the RoomConnector). We seldom need to

use one of these, since we’d normally just connect the two rooms together
directly, but we might want to use a RoomConnector if we wanted to enforce

some kind of travel barrier between the two rooms.

● OneWayRoomConnector – as its name suggests, this is a RoomConnector that

works in one direction only; we specify where it leads to by using its
destination property (which can be defined with the -> symbol in its

template).

● RoomAutoConnector – we’re unlikely ever to need to define one of these in our

own code, but it’s in fact the type of TravelConnector from which Room

inherits, and which allows a Room to be the target of a directional property.

● TravelMessage – this is in many ways similar to a OneWayRoomConnector,

except that it displays a message when it’s traversed. As with
OneWayRoomConnector we use the destination property to define where the

TravelConnector goes. We use travelDesc to display a message for when the

player character travels via this connector, and npcTravelDesc for the message

(if we want one) that’s displayed when an NPC does so.

● DeadEndConnector – this is a special kind of TravelMessage that takes us back

to where we started. We use this to represent the kind of situation where the
player character sets off in a particular direction but then turns back, either
because s/he encounters some kind of obstacle, or because s/he fails to find
anything interesting.

● NoTravelMessage – this is a special kind of TravelMessage which disallows

travel and explains why it is not possible (used when there’s some kind of
physical reason preventing travel, e.g. there’s a solid wall in the way, or walking
that way would take the player off the edge of a cliff).

● FakeConnector – this is a special kind of NoTravelMessage which disallows

travel and explains why the player character is unwilling to attempt it (even
though it is apparently possible). We’d use this when there’s a motivational
reason preventing travel (e.g., you don’t want to leave town until you’ve solved
the mystery of the missing psychic piglet).

● AskConnector – a kind of connector to use when there’s more than one exit in

a certain direction, e.g. two doors in the north wall. Precisely how this works is
beyond the scope of this book; for details see the Library Reference Manual.

● TravelWithMessage - A mix-in class that can be added to objects that also

inherit from TravelConnector to add a message as the connector is traversed.

Note that this isn’t itself a travel connector; it's just a class that should be
combined with TravelConnector or one of its subclasses. This class should be

55

in the superclass list before the TravelConnector-derived superclass. Like

TravelMessage (which inherits from it) this class defines travelDesc and

npcTravelDesc properties to display the traversal messages.

A few further words of explanation may be in order. With the exception of
NoTravelMessage, (and SecretDoor and HiddenDoor when closed) every kind of

TravelConnector shows up in the exit lister (unless we override this behaviour). This

is the only real difference between NoTravelMessage and FakeConnector. We use a

NoTravelMessage to remind a player or explain why travel in a certain direction is

(probably quite obviously) physically impossible; we use a FakeConnector to

represent a direction in which travel looks perfectly possible but is going to be
disallowed for motivational reasons (usually to provide a ‘soft boundary’ to the map).

The difference between FakeConnector and DeadEndConnector is perhaps more

subtle; we use the first when travel is not even going to be attempted (‘You don’t
want to leave town until you’ve found the missing psychic piglet’) and the second
when travel is attempted but the player character turns round and comes back (‘You
walk a few hundred yards down the road, but seeing nothing but desert for miles and
miles ahead, you turn round and come back’ or ‘You walk a few dozen metres down
the forest track until you find a fallen tree completely blocking your path, forcing you
to retrace your steps’). The reason we need to make this distinction is that other
things, and in particular other actors, may respond to the player character’s attempts
at travel; they should react in the second case, but not the first.

It might seem that using these various types of connector might be fairly
cumbersome, as if (on analogy with the various Passage objects), one would have to

do this kind of thing:

forestClearing: OutdoorRoom 'Forest Clearing'
 "A variety of paths runs of in all sorts of directions. "
 north = forestOneWay
 east = forestFake
 west = forestDeadEnd
 south = forestTravelMsg
 southeast = forestNoTravel
;

forestOneWay: OneWayRoomConnector
 destination = byStream
 canTravelerPass(traveler) { return boots.isWornBy(traveler); }

 explainTravelBarrier(traveler)
 {
 "That way is too muddy to walk down without a pair of sturdy boots. ";
 }
;

forestFake: FakeConnector
 travelDesc = "That way looks so dark and threatening you really don't
 fancy it. "
;

56

forestDeadEnd: DeadEndConnector
 travelDesc = "You set off down the track, but shortly encounter a fallen
 tree that completely blocks your path, forcing you to turn round and come
 back. "
;

forestTravelMsg: TravelMessage
 travelDesc = "You walk briskly along the path for a couple of hundred
 yards before coming to another junction. "
 destination = forestJunction
;

forestNoTravel: NoTravelMessage
 travelDesc = "The trees are too densely packed in that direction. "
;

It would indeed be tedious and verbose to have to do this (although it would work),
but fortunately we don’t have to. The code can be made much more concise by using
a combination of the appropriate templates and anonymous nested objects. We’ll
explain anonymous objects in more detail in the next chapter, but for now all we need
to know is that we don’t need to give every object a name (so it can be anonymous)
and that we can define an anonymous object directly as the value of the property of
another object, in which it is said to be nested. Using these two techniques together
we can compress the previous example to:

forestClearing: OutdoorRoom 'Forest Clearing'
 "A variety of paths runs of in all sorts of directions. "
 north: OneWayRoomConnector
 {
 -> byStream
 canTravelerPass(traveler) { return boots.isWornBy(traveler); }
 explainTravelBarrier(traveler)
 {
 "That way is too muddy to walk down without a pair of sturdy boots. ";
 }
 }

 east: FakeConnector { "That way looks so dark and
 threatening you really don't fancy it. " }
 west: DeadEndConnector {"You set off down the track, but shortly
 encounter a fallen tree that completely blocks your path, forcing
 you to turn round and come back. " }
 south: TravelMessage { ->forestJunction
 "You walk briskly along the path for a couple of hundred
 yards before coming to another junction. "
 }
 southeast: NoTravelMessage { "The trees are too densely packed in that
 direction. "}
;

Contrary to possible appearance, we haven’t actually reduced the numbers of objects
involved by doing this, we’ve just defined them much more succinctly. Also, by
keeping everything together on the forestClearing object, we’ve probably made it

much easier to see what’s going on.

57

In this example, the player character is preventing from going north from the clearing
unless s/he’s wearing the boots. If we had several muddy paths on which we wanted
to impose the same condition, it would be tedious to have to code essentially the
same thing on all the relevant TravelConnectors. An alternative is to define a

TravelBarrier object, e.g.:

bootBarrier: TravelBarrier
 canTravelerPass(traveler) { return boots.isWornBy(traveler); }
 explainTravelBarrier(traveler)
 {
 "That way is too muddy to walk down without a pair of sturdy boots. ";
 }
;

Then we can just attach this bootBarrier object to every TravelConnector to which

it applies, e.g.:

forestClearing: OutdoorRoom 'Forest Clearing'
 "A variety of paths runs of in all sorts of directions. "
 north: OneWayRoomConnector
 {
 -> byStream
 travelBarrier = bootBarrier
 }
;

Another reason to define TravelBarriers might be if there were several different

reasons for which we might want to block travel on the same connector. Suppose, for
example, that we want to stop the player going north either if s/he’s not wearing the
boots or if s/he’s left the map behind. Since we want the message explaining why
travel isn’t allowed to reflect the reason we’re stopping it, it would be convenient to
implement them as two different TravelBarriers (rather than putting a compound

condition in canTravelerPass() and then have explainTravelBarrier() work out

which condition failed before displaying its message):

mapBarrier: TravelBarrier
 canTravelerPass(traveler) { return map.isIn(traveler); }
 explainTravelBarrier(traveler)
 {
 "You'd better not go any further that way without a map. ";
 }
;

forestClearing: OutdoorRoom 'Forest Clearing'
 "A variety of paths runs of in all sorts of directions. "
 north: OneWayRoomConnector
 {
 -> byStream
 travelBarrier = [bootBarrier, mapBarrier]
 }
;

This uses a feature of the TADS 3 language we haven’t been formally introduced to

58

yet, namely a list. All we need to know about lists at the moment is that they are
special data type that allows us to group a number of items together, that they’re
enclosed in square brackets, and that list elements must be separated by commas.
We’ll fill in more details later.

There are a couple of specials kinds of TravelBarrier:

● PushTravelBarrier: a TravelConnector that allows regular travel, but not

travel that involves pushing something. By default, we block all push travel, but
subclasses can customize this so that we block only specific objects.

● VehicleBarrier: a TravelConnector that allows actors to travel, but blocks

vehicles. By default, we block all vehicles, but subclasses can customize this so
that we block only specific vehicles.

Exercise 11: Let’s take it for granted now that you’ll look up these
TravelConnectors and TravelBarriers in the Library Reference Manual, and carry

straight on with suggesting a game you can implement to try them out.

Try creating a game based on the following specification. The game starts in a hall,
from which there are four exits. One exit leads down via a flight of stairs to a cellar.
One leads south via a path to the kitchen. One leads north through the front door. And
one leads east directly into the lounge, but the description of the hall suggests that
you go through an archway to get there.

From the kitchen a passageway leads north back to the hall, but there’s a secret panel
to the east and a laundry chute to the west (you can go down the chute but not back
up it). In the kitchen is a trolley that can be pushed around, but it can’t be pushed up
and down stairs, or indeed through the laundry chute. There’s also a flashlight in the
kitchen which can be used to explore dark rooms.

The cellar is a dark room, from which a flight of stairs leads back up into the hall. On
the west side of the cellar is the bottom end of the laundry chute, from which the
player can only emerge (but not go back up again).

In addition to the exit west back out to the hall (which should describe the player
character returning to the hall when s/he goes that way), the lounge has two doors in
the south wall, an oak door (which automatically closes after someone goes through
it) and a pine door (you’ll need to study what the Library Reference Manual has to say
on AskConnector to set this up properly). You can’t push the trolley through the pine

door.

On the other side of the oak door is a study. On the west wall of the study is a
bookcase which is in fact the other side of the secret panel on the east wall of the
kitchen (so that opening the bookcase allows direct access between the kitchen and
the study).

On the other side of the pine door is a room without a floor, situated above the cellar

59

(so that anything dropped here will fall into the cellar below). Hovering in this
chamber are a pair of anti-gravity shoes. Until the player character is wearing the
shoes s/he’ll need to cling to the door to stop falling down into the cellar.

The front door leads north into a drive. To the north of the drive is a road, but the
player character doesn’t want to go there. To the west lies a wood that’s so dense that
if the player character tries to enter it s/he soon has to turn back. An oak tree stands
in the middle of the drive and the player can climb it (but obviously can’t push the
trolley up it). Anything dropped at the top of the tree will fall to the ground below.
Meanwhile an old bicycle is leaning against the front of the house; the bike can be
ridden but can’t go anywhere you can’t push the trolley (to implement the bike
declare it to be of class Chair, Vehicle; we haven’t met these classes yet, but you

can just use them here).

From the drive a path leads east onto a lawn. To east and south the lawn is enclosed
by a bend in the river, but a path leads west back to the drive. Also, there’s a boat
moored up on the river, and you can board the boat to the east. To the north lies
impenetrable shrubbery. If you’re wearing the anti-gravity shoes (but not otherwise)
you can walk south across the river to a meadow (and back north again across the
river to the lawn), but you can’t push the trolley or ride the bike across the river.

Boarding the boat from the lawn takes you to its main deck. From there you can go
starboard back to the lawn or aft to the main cabin. Once in the main cabin you can
go out or forward to the main deck, or port into the sleeping cabin.

Even implementing a game as basic as this may require some features of TADS 3 we
haven’t encountered yet to do properly, so don’t worry if there are some things you
can’t quite get to work fully. Just see how far you can get. When you’ve got as far as
you feel you can (or want to), you can compare your version with the game
connectors.t from the set of sample games.

60

5 Containment

5.1 Containers and the Containment Hierarchy

5.1.1 The Containment Hierarchy

As we’ve already seen, we can locate objects (and the player) in rooms by setting
their location property, initially in one of three (functionally equivalent ways):

redBall: Thing 'red ball*balls' 'red ball'
 location = hall
;

redBall: Thing 'red ball*balls' 'red ball' @hall
;

hall: Room 'Hall'
;

+ redBall: Thing 'red ball*balls' 'red ball'
;

Things can also be picked up and moved to other rooms, or moved by author fiat
using the moveInto(newLoc) method. But there’s more to containment than this; both

in the real world and in Interactive Fiction objects can be in, on, under or behind other
objects, not just in rooms. For now we’ll concentrate on objects being inside other
objects; we’ll expand this to on, under and behind in the next section.

Concretely, objects can be inside certain kinds of other object such as boxes, packing
cases, cabinets, drawers, sacks, bags, suitcases and any other kind of object capable
of containing other objects. In TADS 3 an object that can contain other objects must
be of class Container. Containers can be nested, that is one Container can contain

another Container which can itself contain other things (including other Containers).

Slightly more abstractly, every physical object (i.e. a Thing or something derived from

Thing) in a TADS 3 game has a location property (at least as a first approximation;

MultiLocs can be in several places at once, but we’ll meet them in a later chapter)

which defines where it is. This location property will hold either another object or nil.

If it’s nil then either the object is a top-level room, or the object is off the map (we
can, for example, use moveInto(nil) to move an object out of play). If it’s another

object then that second object will be a room, an actor (if the actor is carrying or
wearing the object) or a Container (or one of the other classes we’ll meet in the next

section).

61

5.1.2 Moving Objects Around the Hierarchy

During game-play, one object can be placed inside another using the PUT IN
command, e.g. put red ball in blue box. We can also move objects in and out
containers in the same way as we move then in and out of rooms, e.g.
redBall.moveInto(blueBox). We can use the same technique to move objects in and

out of the player’s (or another actor’s) inventory. For example,
redBall.moveInto(me); would cause the player character to end up holding the red

ball (assuming the player character has been defined as me).

In principle one might expect to be able to move actors around in the same way; e.g.
to teleport one the player from the hall to the cellar you might try:

 me.moveInto(cellar); // DON’T DO THIS

But this won’t work. To move actors around we should use moveIntoForTravel()

instead:

 me.moveIntoForTravel(cellar); // but this is fine

For a full account of the do’s and don’ts of moving actors around, see the article on
‘NPC Travel’ in the TADS 3 Technical Manual (despite the name of the article, just
about everything it says applies equally to player character travel). It’s also worth
being aware that it’s sometime necessary to use moveIntoForTravel() to move

other objects around as well; for example if you want an object to be magically
transported to the inside of a closed container. The general rule of thumb is that if you
find that moveInto() isn’t doing what you want (usually manifested with unwelcome

run-time errors) try using moveIntoForTravel() instead.

5.1.3 Defining the Initial Location of Objects

We can use one of three methods to define the initial location of objects when some
objects are inside Containers. Suppose that a small red pen is in a small yellow box

which is inside a large blue box which is in the hall. We can first of all set this up by
explicitly defining the location property of each of the objects:

hall: Room 'Hall'
;

blueBox: Container 'large blue box*boxes' 'large blue box'
 location = hall
;

yellowBox: Container 'small yellow box*boxes' 'small yellow box'
 location = blue box
;

redPen: Thing 'small red pen*pens' 'small red pen'
 location = yellowBox
;

62

Or we can do the same thing more compactly using the @ notation in the template:

hall: Room 'Hall';

blueBox: Container 'large blue box*boxes' 'large blue box' @hall;

yellowBox: Container 'small yellow box*boxes' 'small yellow box' @blueBox;

redPen: Thing 'small red pen*pens' 'small red pen' @yellowBox;

Or we can do it, slightly more compactly still, using an extension of the + notation:

hall: Room 'Hall';

+ blueBox: Container 'large blue box*boxes' 'large blue box';

++ yellowBox: Container 'small yellow box*boxes' 'small yellow box';

+++ redPen: Thing 'small red pen*pens' 'small red pen';

This last notation is particularly convenient, and also gives quite a good visual
representation of what’s inside what; it is therefore the containment notation that will
be most commonly used in this manual. Another minor advantage of this notation is
that if you decide to change the name of an object, you don’t need to change the
reference to it on all the objects it contains.

Since we’ll be seeing a lot of this notation from now on, it’s worth explaining it a bit
more fully. In general, an object preceded by n plus signs is contained within the
nearest object above it in the same source file preceded by n-1 plus signs. The
example above is fairly straightforward, since each object has one plus sign than the
one before it, so that each object contains the next. A slightly more complicated
example might be this:

hall: Room 'Hall';

+ blueBox: Container 'large blue box*boxes' 'large blue box';

++ yellowBox: Container 'small yellow box*boxes' 'small yellow box';

+++ redPen: Thing 'small red pen*pens' 'small red pen';

++ greenBox: Container 'small green box*boxes' 'green box';

+++ blackPencil: Thing 'black pencil*pencils' 'black pencil';

+++ whiteFeather: Thing 'white feather*feathers' 'white feather';

++ orangeBall: Thing 'orange ball*balls' 'orange ball';

+ oldHat: Wearable 'old hat*hats*garments' 'old hat';

In this example, the blue box and the old hat are both directly in the hall. The yellow

63

box, the green box and the orange ball are all directly in the blue box. The red pen is
directly in the yellow box, and the black pencil and white feather are directly in the
green box.

While the + notation is very useful for setting up the containment hierarchy, it needs
to be used with some care. For example, if we move an object from one place to
another in our source code (using cut and paste), we need to make very sure that any
+ signs still mean what we intend them to mean. Also, it can become tricky to ensure
that a containment hierarchy defined with + signs is actually the one we want once it
includes long and complex objects, or once we start adding other objects in between
the existing ones in our source. While it’s generally safe to use the + notation for
doors, passages, decorations and simple fixtures in a location, some authors may
prefer to define long and complex objects elsewhere in their source code using the @
notation. When it comes to defining all but the very simplest NPCs (non-player
characters) this becomes almost essential.

5.1.4 Testing for Containment

We often want to test for containment, and there are four methods (defined on Thing,

and hence available for all Things and anything derived from Thing) that help us to

do this:

● isIn(obj) – determines whether the object this is called on is in obj, either

directly or indirectly (so in the above example isIn(hall) would be true for

every object except the hall and isIn(blueBox) would be true for the yellow

box, the red pen, the green box, the black pencil, the white feather and orange
ball.

● isDirectlyIn(obj) – determines whether the object this is called on is

directly in obj. In the above example isDirectlyIn(hall) would be true for

the blue box and the old hat, while isDirectlyIn(blueBox) would be true for

the yellow box and the red pen.

● isOrIsIn(obj) – determines whether the object is either obj itself or is directly

or indirectly in obj. In the above example, isOrIsIn(hall) would be true for

everything; isOrIsIn(yellowBox) would be true for the yellow box and the

red pen.

● isHeldBy(actor) – determines whether the object is being held by actor. For

most things this is the same as testing whether the object
isDirectlyIn(actor); the difference is that something currently worn by the

actor is treated as not held by the actor. So, for example, if the actor is wearing
the old hat, oldHat.isHeldBy(actor) is nil (though

oldHat.isWornBy(actor) would then be true), but if the actor takes the hat off

and continues to carry it oldHat.isHeldBy(actor) becomes true. If the actor

were to pick up the red pen directly (taking it out of the box) then

64

redPen.isHeldBy(actor) would be true, but if the actor took either the blue

box or the yellow box, leaving the red pen in the yellow box, then
redPen.isHeldBy(actor) would be nil.

We'd typically use these methods in conditional statements, such as:

if(!orangeBall.isHeldBy(me))
"You need to be holding the orange ball before you can throw it
anywhere. ";

if(whiteFeather.isIn(hall))
"The white feather must be around here somewhere. ";

Just as we can test whether one object is inside another, we can also test what other
objects an object directly or indirectly contains. For this we use two
properties/methods:

● contents – a list of objects directly contained by this object.

● allContents – a list (technically a Vector) of objects directly or indirectly

contained by this object.

So, in the above example, blueBox.contents would be a list consisting of yellowBox

and orangeBall, whereas blueBox.allContents would be a Vector containing

everything except the hall, the old hat and the blue box (at this point the difference
between a list and a Vector need not detain us; we’ll deal with it later on).

Conversely, we may want to know which room an object is in, even though it may be
in a container inside a container. For this we use the getOutermostRoom method.

Everything in the hall would have returned hall as the value of getOutermostRoom.

5.1.5 Containment and Class Definitions

There’s just one more thing to note about the plus notation before we move on to a
slightly different topic, and that is how it interacts with class definitions. The short
answer is that class definitions are ignored for purposes of the object containment
hierarchy, so if we were to write:

hall: Room 'Hall';

+ blueBox: Container 'large blue box*boxes' 'large blue box';

++ yellowBox: Container 'small yellow box*boxes' 'small yellow box';

class Pen: Thing '*pens'
 bulk = 2
;

+++ redPen: Pen 'small red pen' 'small red pen';

The red pen would still end up inside the yellow box, and the Pen class would be
nowhere (it can’t be anywhere, since it’s not a physical object; it’s more akin to the

65

Platonic idea of a Pen, or an abstract specification of what we want all Pens to have in
common).

5.1.6 Bulk, Weight and Container Capacity

In this example we defined bulk = 2 on the Pen class, and this conveniently leads us

into the next point to make about containment. It’s unrealistic to allow a large chair to
fit inside a small purse, and there may be a limit to the total weight an actor can
carry. To model this TADS 3 defines a bulk property and a weight property on every

Thing, and a bulkCapacity on every container (or actor) and a weightCapacity

property on every actor. A player cannot insert an object inside a container if doing so
would make the total bulk of all objects in that container exceed the bulkCapacity of

that object. Likewise, an actor cannot pick up an object if doing so would mean that
either the total bulkCapacity or the total weightCapacity of the actor would be

exceeded. Since inventory limits are often considered something of an unnecessary
nuisance by many players of IF, the library defaults make it very unlikely that either
the bulkCapacity or the weightCapacity of an actor would be exceeded, since these

are both set to 10,000, but we can, of course, set them to something rather smaller if
we wish. The default bulkCapacity of a Container is likewise set to 10,000 so unless

we make it smaller (either globally or on particular containers) we’re unlikely ever to
exceed it.

By default the library defines the weight and bulk of every (portable) Thing as 1.

NonPortable changes these values to 0, on the principle that since NonPortable items
aren’t generally moved around, their bulk and weight are mostly irrelevant; they
usually only become relevant when a NonPortable item is part of something else (as

a Component, say, or a Decoration perhaps), in which case we generally don’t want

them to contribute to the bulk or weight of the item of which they’re a part. The one
class that is given a bulk of larger than 1 by the standard library is Person, which is

given a bulk of 10. In a game that wants to model bulk with any precision this value
may be rather too small; a person is generally a lot more than ten times the smallest
object one might want to carry around (a small pebble, say), so it may be convenient
to change this to something bigger (40, 50 or 100 say). This is fine, but if we do this
we need to remember to change the bulkCapacity of certain NestedRoom classes

(objects that can contain actors), which are generally set just large enough to contain
one or two people, notably Chair (we’ll talk more about NestedRooms in a later

chapter).

There is one more property that can limit the bulk of things a player can pick up or
put into containers, namely maxSingleBulk. Regardless of whether the container

would become full, or the player still has room in his notional hands, an object can’t
be inserted into a container (or picked up by a player) if its bulk exceeds the
maxSingleBulk for that container or actor. The default maxSingleBulk is relatively

small (it’s 10), so it’s quite easy to exceed it; this is something we often need to

66

watch out for if we’re wondering why an object won’t fit into a container that seems to
be quite big enough for it (or can’t be picked up by an actor who still has plenty of
bulk capacity left).

There is, in fact, also a Container method that has an effect potentially similar to that
of maxSingleBulk, namely canFitObjThruOpening(obj). By default this returns true,

but it could be used to prevent a large object fitting through a narrow opening (e.g. if
we’re modelling a large bottle with a narrow neck); for example:

bottle: Container 'large narrow bottle/neck*bottles' 'bottle'
"It's quite large, but its neck is narrow. "
canFitObjThruOpening(obj)
{

return obj.bulk < 3;
}

;

Admittedly this example doesn’t do anything much different from setting
maxSingleBulk = 2 on the bottle, but a more sophisticated version might do so (for

example if we wanted to take the shape of the object into account as well as the bulk,
so that, for instance, we could fit a long narrow object like a pencil through the
opening but not an even moderately-sized round one such as ball-bearing, even
though the pencil and the ball-bearing might have the same bulk).

There’s one further point to note about bulk and weight. The weight property gives

the weight of the object in itself, but if the object contains other objects then its
carrying weight will be its own weight plus the weight of everything it contains (the
weight of a sackfull of coal is the weight of the empty sack plus the weight of the
coal). To get at this full carrying weight, use the getWeight() method. There is also a

getBulk() method to get at the total bulk of containers; although the bulk of most

containers remains constant regardless of what’s put inside, that’s not true of all
containers (a sack that’s full of coal is bulkier than an empty sack, and the
StretchyContainer class we’ll be meeting below allows us to model this), so to be

sure that our code doesn’t contain subtle bugs, it’s safer to use getBulk() as well as

getWeight() in calculations involving the bulk and weight of objects.

5.1.7 Items Hidden in Containers

Most of the properties and methods we’ve just been discussing are defined on the
BulkLimiter class (which you might want to look up in the Library Reference

Manual). This is the ancestor both of the Container class, and of a number of other

classes we’ll be looking at below. A further property defined on BulkLimiter is

revealHiddenItems. By default this is true; this means that if we put any Hidden

items in a Container (or other BulkLimiter) they’re automatically revealed when the

player looks in the Container.

67

For example, suppose we decided that the player shouldn’t notice the red pen till s/he
explicitly looked in the yellow box; we could handle that by defining:

++ yellowBox: Container 'small yellow box*boxes' 'small yellow box';

+++ redPen: Hidden 'small red pen*pens' 'small red pen';

Provided we didn’t override revealHiddenItems on the yellow box, the red pen would

remain hidden until the player looked in the yellow box, whereupon the red pen would
be revealed and listed as part of the yellow box’s contents.

5.1.8 Notifications

There are two further methods of BulkLimiter (actually they’re initially defined on

Thing) it’s useful to be aware of at this stage, namely notifyInsert(obj, newCont)

and notifyRemove(obj). These are both called when we use moveInto() to move an

object to a new location; if we need to we can bypass them by using baseMoveInto()

instead.

Of these, notifyRemove() is the simpler, so we’ll deal with it first. Whenever an

object is about to be removed from inside another object (whether the first object is
directly or indirectly contained in the second), notifyRemove(obj) is called on the

containing object with the object about to be removed from it as the obj parameter.
By default this does nothing, but a trivial example will help make it clear how it can be
used:

blackBox: Container 'black box' 'black box' @hall
 notifyRemove(obj)
 {
 "Removing <<obj.theName>> from <<obj.location.theName>>! ";
 }
;

+ greenBox: Container 'green box*boxes' 'green box'
;

++ pebble: Thing 'pebble/stone*pebbles' 'pebble'
;

If the player were to issue the command take pebble the game would respond with
“Removing the pebble from the green box!”. If the player were to issue the command
take green box the game would respond with “Removing the green box from the
black box.” Note then, that this method is called just before the movement is carried
out. This means that we could, if we wished, use notifyRemove() to stop an object

being removed from a container:

blackBox: Container 'black box*boxes' 'black box' @hall
 notifyRemove(obj)
 {
 if(obj == pebble)

68

 {
 "The pebble refuses to leave <<obj.location.theName>>! ";
 exit;
 }
 else
 "Removing <<obj.theName>> from <<obj.location.theName>>! ";
 }
;

+ greenBox: Container 'green box*boxes' 'green box'
;

++ pebble: Thing 'pebble/stone*pebbles' 'pebble'
;

This could result in the following transcript:

>take pebble
The pebble refuses to leave the green box!

>take green box
Removing the green box from the black box!

>take pebble
Taken.

One new feature we’ve just introduced here is exit. Technically speaking this is a

macro, but we haven’t met macros yet, so for now we can just think of it as a special
statement that stops an action in its tracks.

As suggested above, notifyInsert() is a little more complicated. For one thing it’s

called with two parameters: notifyInsert(obj, newCont) where obj is the object

being moved and newCont is the container obj is about to be moved into (which may
be the object notifyInsert() is being called on, or another object contained within

that object). This can be illustrated via an extension to our previous example:

blackBox: Container 'black box*boxes' 'black box' @hall
 notifyInsert(obj, newCont)
 {
 "Putting <<obj.theName>> in <<newCont.theName>>. ";
 }

 notifyRemove(obj)
 {
 "Removing <<obj.theName>> from <<obj.location.theName>>. ";
 }
;

+ greenBox: Container 'green box*boxes' 'green box'
;

++ pebble: Thing 'pebble/stone*pebbles' 'pebble'
;

69

Which could give us a transcript like:

You see a black box (which contains a green box (which contains a pebble)) here.

>take pebble
Removing the pebble from the green box.

>take green box
Removing the green box from the black box.

>put green box in black box
Putting the green box in the black box.

>put pebble in green box
Putting the pebble in the green box.

This notification occurs just before the object being moved is inserted into its new
container, so once again it could be used to prevent the insertion from going ahead.
And this is in fact just what BulkLimiter uses to prevent an object that’s too big from

being inserted when it would result in exceeding the BulkLimiter’s bulkCapacity or

maxSingleBulk. But therein lies a potential complication, or rather a potential trap. If

we override notifyInsert() on a container with our own code, as in the above

example, we are in effect replacing what the library does with notifyInsert(), in this

case thereby removing the check that prevents something too big from being inserted
into the container. This is a very easy mistake to make.

There is a solution, but it involves a programming construct we haven’t yet met.
However, since the problem it solves is so very common, it’s worth anticipating the full
discussion and giving the basic solution now:

Whenever you override a library method, be very sure to call the inherited method
unless you are very sure that you don’t need to.

So how do we call the inherited method, and what exactly does it mean? We’ll give a
fuller answer shortly, but for now the short answer is that the inherited method is
what the method would have done if we hadn’t overridden it, and we call it by using
the inherited keyword along with the parameter list of the method we’re overriding.

So, for example, the right way to override notifyInsert() in our previous example

would have been this:

blackBox: Container 'black box*boxes' 'black box' @hall
 notifyInsert(obj, newCont)
 {

 inherited(obj, newCont);
 "Putting <<obj.theName>> in <<newCont.theName>>. ";
 }
;

70

Note that we follow the inherited keyword with the parameter list just as it appears

in the method definition; indeed it’s a good idea to use copy and paste to do this. It’s
also a good idea to get into the habit of remembering to call inherited methods from
very early on. We’ll expand on this point next.

5.2 Coding Excursus 7 – Overriding and Inheritance

We briefly introduced the concept of inheritance in Coding Excursus 2. The time has
come to delve into it a little deeper.

As we have seen, an object can inherit from one or more classes. If we define a new
class, that too can inherit from one or more classes. In the TADS 3 inheritance model,
it’s even possible for an object to inherit from another object, or for a class to inherit
from an object. The following are all perfectly legal definitions:

myObj: PresentLater, Thing
;

mySecondObj: myObj
;

class myClass: Container, Fixture
;

class mySecondClass: myObj
;

There is, indeed, very little difference between objects and classes in TADS 3, except
that:

● classes are not included in the object containment hierarchy (as we have just
seen).

● if we write code to iterate over objects, classes will not be included (as we’ll see
some way below).

● classes are declared using the keyword class (as shown in the above

example).

Nonetheless, it is still worth observing the distinction between classes and objects; we
use classes to define behaviour we want to apply to several relevantly similar objects,
and objects to represent concrete instantiations of those classes.

The power of this model lies in the fact that we can not only just inherit the behaviour
of classes (or objects), we can also modify and override that behaviour on particular
objects and subclasses. If you have not yet done so, now might be a good time to
read the article ‘Object-Oriented Programming Overview’ in the TADS 3 Technical
Manual, which explains this all in a bit more detail.

The basic procedure for overriding a property or method is straightforward; we simply
redefine the property or method on the inheriting object. We effectively do this every

71

time we define a standard property on an object; for example, when we define the
desc property of a Thing we’re overriding the library default that would otherwise say

“You see nothing unusual about the whatsit.” More generally, suppose we define (or
use) MyClass and then derive myObj from it, overriding its name and bulk properties

and its makeBigger() method:

class Blob: Thing
bulk = 2
weight = 2
makeBigger(inc) { bulk += inc; }
makeLighter()
{

if(weight > 0)
weight-- ;

}
name = 'blob'

;

greenBlob: Blob
bulk = 3
name = 'green blob'
makeBigger(inc)
{
 "\^<<theName>> just got bigger! ";
}

;

With this definition, greenBlob.bulk is 3, greenBlob.weight is 2, and

greenBlob.name is 'green blob'. After executing greenBlob.makeLighter() once,

greenBlob.weight will be 1. When we call greenBlob.makeBigger(2), however, the

bulk of greenBlob won’t change, even though we’ll see the message “The green block

just got bigger!”.

This probably wasn’t what we wanted; we probably wanted the message to display
and the bulk of greenBlob to grow by 2. We could, of course, just repeat the

statement bulk += inc in our overridden makeBigger() method, but this negates

much of the point of inheritance, and could become very tedious and potentially error-
prone if we were overriding a more complicated method comprising many statements.
A better way to handle it is to use the inherited keyword; inherited does whatever

the method (or property) we’re overriding would have done if we hadn’t just
overridden it. So, using inherited, a better way to define greenBlob would be:

greenBlob: Blob
bulk = 3
name = ('green ' + inherited)
makeBigger(inc)
{
 inherited(inc);
 "\^<<theName>> just got bigger! ";
}

;

72

There are a couple of things to note here. The first (to reiterate a point made
previously) is that when we use the inherited keyword in a method, we must use it

with the same argument list as the method we’re overriding; though not necessarily
with the same argument list as the method we’re defining: the following would be
legal:

makeBigger()
{
 inherited(2);
 "\^<<theName>> just got bigger! ";
}

The other thing to note is that we can also use the inherited keyword to retrieve the

value of an inherited property (in this case the name ‘blob’ from Blob). Note also the

syntax we employed here, setting the name property of greenBlob to an expression

in brackets. This is exactly equivalent to writing:

name { return 'green ' + inherited; }

A further advantage of using the inherited keyword in situations like these is that if

we subsequently realize we want to make changes to the base class (in this case
Blob), the changes will then automatically be carried through to all the classes and
objects that inherit from it. Suppose, for example, that we later decide that all the
Blobs in our game should be called gooey blobs, and that no Blob should be allowed to
grow beyond a certain maximum bulk. We might then rewrite our definition of the
Blob class thus:

class Blob: Thing
bulk = 2
weight = 2
maxBulk = 10
makeBigger(inc)
{

if(bulk + inc <= maxBulk)
bulk += inc;

else
bulk = maxBulk;

}
makeLighter()
{

if(weight > 0)
weight-- ;

}
name = 'gooey blob'

;

Then the enforcement of a maximum bulk will now also apply to the greenBlob

object, whose name will now automatically become ‘green gooey blob’. Furthermore,
when we spot the obvious bug (namely that we hadn’t allowed for the possibility that
the inc parameter to makeBigger(inc) might be a negative number), whatever fix we

apply to the Blob class will automatically apply to the greenBlob object and to any

73

other class or object derived from the Blob class – provided we’ve used the

inherited keyword when overriding the makeBigger() method (of course, it’s also

perfectly all right not to use the inherited keyword when we want the overridden

method to do something substantially different from its behaviour on the class we’re
inheriting from, so that the inherited behaviour is of no use to us).

In addition to overriding methods and properties, we can also modify classes (and
objects). Suppose that instead of defining a new Blob class, what we really wanted to

do was to add the makeBigger() functionality to the library’s Thing class. We could

do this quite straightforwardly by modifying Thing:

modify Thing
 maxBulk = 10
 minBulk = 0
 makeBigger(inc)
 {
 bulk += inc;

if(bulk > maxBulk)
bulk = maxBulk;

if(bulk < minBulk)
bulk = minBulk;

 }
;

What this actually does is rename the existing Thing class to some strange internal

name like ae45 and then create a new Thing class which inherits everything from it

apart from the bits we’ve changed or overridden. Anything defined to be of class
Thing or as inheriting from Thing now uses our new Thing class.

Note that we can also use the inherited keyword in a modified class, and that it

works just the same way as it does in a class or object definition; that is it does
whatever the method we’re inheriting from would have done if we hadn’t overridden
it. For example, suppose the makeBigger() method were defined on a modification of

Thing in some extension we were using, and we wanted to make a further

modification to make the makeBigger() method display a message. We could then do

this:

modify Thing
makeBigger(inc)
{

inherited(inc);
if(inc != 0)

"\^<<theName>> just got <<inc > 0 ? 'bigger' : 'smaller'>>! ";
}

;

This shows that we can modify the same class (or object) as many times as we like, in
which case the modifications take effect in the same order as they appear in the
source code (which is one major reason why the library files always need to come first
in our build: we can’t modify a library class before the library defines it!). It should

74

also be noted that we can, of course, equally well use inherited to inherit the

behaviour of a method (or property) defined in the library, e.g., to make every
Openable object remember if it has ever been opened:

modify Openable
hasBeenOpened = nil
makeOpen(stat)
{

inherited(stat);
if(stat)

hasBeenOpened = true;
}

;

We sometimes need more control over where we inherit from. For example, suppose
we want to define an object that behaves like a Decoration in just about every

respect, except that we want a special response for touching it. By default, touching a
Decoration will produce the standard “not important” message. To get a different

response, we need to override verifyDobjFeel() (don’t worry about the name or

purpose of this method for now; we’ll be covering that kind of thing in the next
chapter). But we can’t just use the inherited keyword by itself, since that will simply

inherit Decoration’s handling, which is what we want to change. What we actually

want is Thing’s version of verifyDobjFeel(). We can get that by using inherited

plus the name of the class we want to inherit from:

hangingRug: Decoration 'hanging faded tatty rug*rugs' 'hanging rug'
 "It looks quite faded, and more than a little tatty. "
 feelDesc = "It feels quite rough. "
 verifyDobjFeel() { inherited Thing; }
;

Note, however, that we can only do this with a class that the object (or class) we’re
defining actually inherits from at some point (however indirectly). If we want to
borrow a method (or property) from some class that’s nowhere in the inheritance tree
of the class or object we’re defining, we can use the delegated keyword instead, for

example:

weather: Topic 'weather'
 name = 'weather'
 theName = (delegated Thing)
 theNameFrom(str) { return delegated Thing(str); }
;

The Topic class (which we’ll encounter again later) inherits from the VocabObject

class, but not from the Thing class, which defines theName and theNameFrom().

Thing.theName is defined as (theNameFrom(name)), so if (for whatever obscure

reason) we want weather.theName to evaluate to 'the weather', we need to borrow

both the theName and theNameFrom() methods from Thing. The above example

illustrates how we can do this using the delegated keyword.

75

The modify keyword lets us change an object or class definition, but only within

certain limits. In particular it doesn’t let us change the superclass list of the object or
class we’re modifying. For example, if we use modify to change the behaviour of the

OpenableContainer class the one thing we can’t modify is the fact that it inherits

from the classes Openable and Container. If we want to start completely from

scratch with the definition of an object that’s been previously defined, we can do so
using the replace keyword. For example, the following would be possible (though not

particularly useful):

replace OpenableContainer: Thing
 verifyDobjOpen() { illogical('Just because this looks openable doesn\'t mean
 I'm going to let you open it! '); }
;

Following the replace keyword we go on to define the class (or object) just as if we

were defining it completely from scratch. The replace keyword can also be use to

replace functions that have been previously defined.

For more information about the topics covered in this excursus, read the relevant
parts of the articles ‘The Object Inheritance Model’, ‘Object Definitions’, ‘Expressions
and Operators’ and ‘Procedural Code’ in the TADS 3 System Manual.

5.3 In, On, Under, Behind

5.3.1 Kinds of Container

After that somewhat lengthy (but nevertheless important) excursus, we can return to
the main topic of this chapter, namely containment. We have already seen that we can
use the Container class to put things in; we should now look at some related classes.

First, here is the list of classes for things than can contain other things within them:

● BasicContainer – This is the base type for the other Container types; it has no

action handling, which means that the player can’t put things in a
BasicContainer, but things can be put inside by game code. We seldom use

this class in a game.

● Container – the standard container type we’ve met already. This is a

straightforward container like a bin, bag or sack that we can put things in.

● Dispenser – a container for a special type of item, often one where we can

take an item from the Dispenser but not return it (like a box of matches or a

roll of paper towels). The canReturnItem property (nil by default) determines

whether or not an items can be returned to the Dispenser, and the

myItemClass property (Dispensable by default) contains the class of objects

dispensed by (and possibly accepted by) the Dispenser. We’ll meet a particular

example of this (the Matchbook) in the chapter on Darkness and Light.

76

● RestrictedContainer – a container that can contain only certain objects (for

example, only batteries can go in a flashlight). We can either list the objects
that can fit a RestrictedContainer in its validContents property, or override

the canPutIn(obj) method to determine whether obj may be put in the

RestrictedContainer; the method should return true to allow insertion or nil

to forbid it. (RestrictedContainer is a particular type of RestrictedHolder).

● SingleContainer – a container that can only hold one object at a time; putting

an object in a SingleContainer that already contains something causes that

thing to be removed from the SingleContainer first.

● StretchyContainer – a container that grows in bulk to match the bulk of its

contents (a full sack is bulkier than an empty sack, for instance). Even an
empty sack can may have some bulk, however, so we can use the minBulk

property to define the bulk of the StretchyContainer when empty. The bulk

property gives the intrinsic bulk of the empty StretchyContainer; use the

getBulk() method to report its distended bulk (i.e. the total bulk allowing for

the expansion due to its contents).

● OpenableContainer – a container that can be opened or closed, and usually

hides its contents when closed (see further on materials below). As with doors
we can use the isOpen property to test whether an OpenableContainer is open

or closed, but should use the makeOpen(stat) method to open or close it under

programmatic control. If we want an OpenableContainer to start out open, set

its initiallyOpen property to true.

● LockableContainer – a kind of OpenableContainer that can be locked or

unlocked. Note, however, that a LockableContainer doesn’t need a key; a

LockableContainer models a container that can be locked or unlocked with

some kind of catch. There’s little obstacle to a player opening a
LockableContainer, since the default library behaviour is to unlock it via an

implicit action. The initiallyLocked property (true by default) defines

whether the container starts out locked. Use the makeLocked(stat) method to

lock or unlock a LockableContainer under program control.

● KeyedContainer – a kind of LockableContainer that needs a key to unlock it.

We’ll discuss this further when we come to the chapter on locks and keys.

● BagOfHolding – this is not a class of container, but a mix-in class for use with a

container class. If the player character has a limited bulkCapacity and his/her

hands become too full but the player character is carrying a BagOfHolding,
items will be moved from his/her inventory to the BagOfHolding to make room
for the player character to take something else. The affinityFor(obj) method

can be used to return a value defining how willing a given BagOfHolding is to
have obj moved to it; the return values should range between 0 (obj can’t be

77

moved to this BagOfHolding at all) to 200 (this object or type of object is what
this BagOfHolding is particularly meant for). The default value is 100.

The use of these various classes shouldn’t present any particular problems, but a
couple of examples may be helpful here:

+ hole: RestrictedContainer, Fixture 'small round hole*holes' 'small round hole'
 validContents = [roundPeg, pen]
 notifyInsert(obj, newCont)
 {
 "As you insert <<obj.theName>> in the hole, you hear a click come
 from the door. ";
 blackDoor.makeLocked(nil);
 }
 notifyRemove(obj)
 {

 "There's a click from the black door as you remove <<obj.theName>>. ";
 blackDoor.makeLocked(true);
 }
 bulkCapacity = 1
;

Here we have a special device for unlocking a door, a round hole that unlocks a door
when something is inserted and locks it again when the object is removed. Since it’s a
small hole, only small objects can fit in, and only one at a time (bulkCapacity = 1

should ensure this). Because of the shape of the hole, only the round peg and the pen
will actually fit. Note that we make the hole a Fixture as well as a

RestrictedContainer; by default containers are portable, to stop them being moved

around we have to add a NonPortable class to their class list.

A second example:

+ briefcase: LockableContainer 'large leather briefcase/case' 'briefcase'
 "It's quite large, and made of leather. "
;

++ document: Readable 'document*documents' 'document'
 "It's marked TOP SECRET at the top. The
 rest seems to be in code. "
 readDesc()
 {
 if(codeBook.seen)

 "It looks like the secret plans for a new IF language that will
 revolutionize the production of Interactive Fiction! ";
 else
 "It's in code; you won't be able to decipher it until you find
 the key. ";
 }
;

Here the briefcase is portable, and has a lock, but the lock is a simple catch that can
be unlocked without a key. Inside the briefcase is a document that will be found once
the briefcase is open, but which won't be visible while the briefcase is closed.

78

5.3.2 Container Materials

In the previous example the document is effectively invisible while it’s inside the
closed briefcase; that’s reasonable, we can’t see through leather. But some containers
such as glass jars or wire cages, may be made of materials we can see through. We
can cater for this in TADS 3 with the material property.

The TADS 3 library defines the following kinds of material:

● adventium – opaque to all senses (sight, sound, smell and touch).

● glass – transparent to light, but opaque to the other three senses (i.e. we can

see through it, but not hear, smell or touch through it).

● paper – opaque to touch and sight, but allows smells and sounds through.

● fineMesh – transparent to all senses except touch.

● coarseMesh – transparent to all senses, but doesn’t allow objects to pass

through.

If we needed some other combination of senses, it would be easy enough to define
our own material. For example, suppose we wanted a material that allowed only
sound to pass, we could define new material (let’s call it cardboard) like this:

cardboard: Material
 seeThru = opaque
 hearThru = transparent
 smellThru = opaque
 touchThru = opaque
;

To make use of these materials, we simply need to assign them to the material

property of the container in question. For example, suppose we want a glass jar
containing a pebble and a small cage containing a canary:

+ glassGar: OpenableContainer 'glass jar*jars' 'glass jar'
 material = glass
;

++ pebble: Thing 'small round pebble/stone*pebbles' 'pebble'
 "It's small and round. "
;

+ cage: OpenableContainer '(bird) birdcage/cage' 'birdcage'
 material = fineMesh
;

++ canary: Actor 'canary/bird*birds' 'canary'
;
Note that there’s really only any point in doing this with an openable container, since
unless the container can be closed, its contents will be visible (and tangible, audible
and smellable) in any case. As yet we haven’t really said much about sound, smell
and touch, so of the materials we’ve talked about, only glass and adventium are likely
to be immediately useful. We’ll deal with the other senses in a later chapter.

79

5.3.3 Other Kinds of Containment

So far we’ve concentrated on containers we can put things in. But it’s also common in
Interactive Fiction to have things we can put things on: tables, desks, trays and things
like that. For this we use the Surface class. As with containers, Surfaces are portable

unless we make them otherwise by mixing them in with a NonPortable class. So, for

example, we might have:

+ table: Surface, Heavy 'table*tables' 'table'
;

++ tray: Surface 'tray*trays' 'tray'
;

+++ mat: Surface 'mat*mats' 'mat'
;

++++ bowl: Container 'bowl*bowls' 'bowl'
;

+++++ grape: Food 'grape*grapes*fruit' 'grape'
;

In this example the grape is in a bowl which is resting on a mat which is resting on a
tray which is resting on the table. The table can’t be moved (because it’s too heavy),
but the tray and the mat can both be taken (as, of course, can the bowl and the
grape).

RestrictedSurface works just like RestrictedContainer (both inherit from

RestrictedHolder, which is where the restricting behaviour is mostly defined). At

first sight the idea of a Surface which will only allow certain objects (or certain kinds

of object) to be put on it may seem a little strange, but the point becomes clearer if
we think of a RestrictedSurface not primarily as a flat surface like a table-top, but

simply as something we might reasonably try to put only certain kinds of thing on,
such as a peg, coat-hanger or coat-stand, so we might have something like:

+ hanger: RestrictedSurface 'wire coat-hanger/hanger*hangers' 'coat-hanger'
 validContents = [whiteShirt, blueShirt, brownCoat]
;

+ peg: RestrictedSurface, Fixture 'wooden peg*pegs' 'peg'
 validContents = [floppyHat, brownCoat]
;

Putting things in and on other things is pretty common in IF. Less common, but still
useful, is putting things under or behind other things. For this TADS 3 defines the
following classes:

● Underside – something we can put things under.

● RearContainer – something we can put things behind.

80

● RearSurface – essentially the same as a RearContainer but models the

contents as being attached to the back of the object rather than merely sitting
behind it. The only practical difference between a RearContainer and a

RearSurface is that moving a RearSurface moves its contents along with it,

whereas moving a RearContainer abandons the contents, leaving them behind

where the RearContainer used to be.

There are also Restricted versions of each of these classes (RestrictedUnderside,

RestrictedRearContainer and RestrictedRearSurface) which restrict their

contents in much the same way as RestrictedContainer and RestrictedSurface.

Their use is unlikely to be very common, but one can imagine, for example, that we
might want to use a RestrictedRearContainer to model a very narrow space behind

a piece of heavy furniture, into which only a sheet of paper might fit.

The Underside, RearContainer and RearSurface classes particularly lend themselves

to be used in conjunction with the Hidden class, since it could well be that the player

won’t notice what’s under or behind something until s/he looks under or behind it; for
example:

+ rug: Underside 'small dark rug*rugs' 'rug'
;

++ silverCoin: Hidden 'silver coin*coins' 'silver coin'
;

+ mirror: RearSurface 'square mirror*mirrors' 'mirror'
 initSpecialDesc = "A square mirror is hanging on the wall. "
;

++ bankNote: Hidden 'bank note/banknote*notes banknotes' 'banknote'
;

There’s a further point to note about this example. If the player takes the rug, the
silver coin will be revealed in any case (because it’s assumed to have been left lying
on the floor). If the player takes the mirror, the banknote isn’t automatically revealed
because it’s assumed to be stuck to the back of the mirror (and won’t be found until
the player enters the command look behind mirror). If the mirror had been a
RearContainer instead of a RearSurface, it would have behaved more like an

Underside; that is, moving it would have revealed the banknote that would then have

been notionally left behind on the wall (or perhaps notionally have fallen to the floor).
This behaviour is defined on the SpaceOverlay class, from which both RearSurface

and Underside inherit. Look up SpaceOverlay in the Library Reference Manual for

further details (including how its behaviour can be tweaked).

We have now met four types of containment: in, on, under and behind. Thing, and

hence all these classes that descend from Thing, provide the property objInPrep,

which defines the preposition to be used for objects located within. Thus
Thing.objInPrep is ‘in’ (and BasicContainer inherits the same value from Thing),

81

Surface.objInPrep is ‘on’, Underside.objInPrep is ‘under’ and

RearContainer.objInPrep is ‘behind’. This property can be used to tweak certain

kinds of message describing the whereabouts of an object. It is used indirectly, in that
actorInPrep is used to build phrases describing the whereabouts of an actor

(something we’ll come back to in a later chapter) and actorInPrep by default takes

its value from objInPrep. We can also make things be listed as ‘beneath’ something

rather than ‘under’ something, say, simply by changing Underside.objInPrep to

‘beneath’.

If we want more control over how objects in, on, under or behind other things are
listed (more than simply changing the preposition, that is), we need to override the
appropriate Lister. The particular listers to be used with a particular class of

Container, Surface, Underside or RearContainer are defined on various properties

of that class. A fuller explanation is beyond the scope of this manual, both because it
would be quite lengthy, and also because it’s already provided elsewhere: for the full
story see the article on ‘Lists and Listers’ in the TADS 3 Technical Manual (but you
don’t have to rush to do this straight away; it can wait until you need it).

Finally, although we have now seen four types of containment (in, on, under and
behind), apart from the minor differences between them that we have noted, they all
basically use the same containment mechanism. That is the containing object
(whether a Container, Surface, Underside or RearContainer) maintains a list of the

things it contains (in, on, under or behind) in its contents property, and the contained

objects keep a note of what they’re contained by in their location property. This

means that a given object can support only one kind of containment relation. If it’s a
Container, we can put things in it, but not on it. If it’s a Surface, we can put things

on it, but not in it, under it or behind it. For some things that’s okay, but for others it’s
an unrealistic restriction. We can often put things under a bed or table as well as on
top of it. A desk next to a wall might have things on it, under it, in it and behind it. At
first sight the TADS 3 world model seems not to allow for this. It turns out that TADS
3 does provide a means of dealing with this kind of situation, but before we go on to
look at it, we first need to take a closer look an anonymous objects.

5.4 Coding Excursus 8 – Anonymous and Nested Objects

Hitherto, we’ve given every object a name when we’ve defined it (here ‘name’ refers
to the object identifier that comes before the class list, not to the name property). For

example, suppose the room description mentioned faded pink wallpaper, so we
decided to implement the wallpaper as a Decoration:

+ wallPaper: Decoration 'faded pink wallpaper' 'wallpaper'
 "It looks like the kind of thing you'd associate with a Victorian nursery;
 it's almost faded enough to be that old. "
;

82

The only real function of this object is to provide a response to examine wallpaper
that doesn’t deny the wallpaper’s existence. We’ll never need to refer to the wallpaper
object in any other piece of code. In such an instance there’s actually no need to give
the wallpaper object an identifying name, we can instead declare it as an anonymous
object:

+ Decoration 'faded pink wallpaper' 'wallpaper'
 "It looks like the kind of thing you'd associate with a Victorian nursery;
 it's almost faded enough to be that old. "
;

Although this kind of anonymous object declaration is particularly useful with
decoration-type objects, it’s by no means restricted to them; we can use it for
absolutely any object that we don’t need to refer to by its identifying name elsewhere.
This can make our code a bit more compact, and also spares us the trouble of having
to think up lots of identifying names for unimportant objects. In any case, if we
declare an anonymous object and later find that we do need to refer to it in some
other part of code, we can always go back and give it an identifying name.

Another use of anonymous objects is as nested objects. A nested object (which is
necessarily anonymous) is one that is defined directly on the property of another
object. We have already seen examples of this in defining various kinds of
TravelConnector on the directional properties of rooms, e.g.:

meadow: OutdoorRoom 'meadow'
 "The ground becomes distinctly marshier to the north. "
 north: TravelMessage { ->marsh "You step cautiously into the marsh. " }
;

We should note several points about this kind of definition.

First, we can always refer to a nested object using the name and relevant property of
the enclosing object; in this instance meadow.north will give us a reference to the

TravelMessage object. But the nested object remains anonymous; meadow.north is

the name of the north property of the meadow, which just happens to contain a
TravelMessage object right now (but which in principle could later be changed to

contain something else, even if we’re unlikely ever to change it in practice); it’s not
the name of the TravelMessage object.

Second, when defining a nested object, we use exactly the same syntax (following the
colon) as we would for defining an ordinary object, starting with the class list, except
that we can’t give it a name and that we must use the brace notation ({ }) to

delimit the object definition.

Third, when defining a nested object using a template, we can either put the bits
belonging to the template inside the braces (as in the above example) or between the
class list and the opening brace (as is also the case when defining an ordinary object
with the brace notation).

83

The previous example, purely using a template, may slightly obscure the fact that a
nested object can be defined with properties and methods just like any ordinary
object, for example:

desk: Surface, Heavy 'desk*desks furniture' 'desk'
 underDesk: Underside
 {
 name = 'desk'
 bulkCapacity = 5
 notifyRemove(obj)
 {
 "You pull <<obj.theName>> out from under the desk. ";
 }
 }
;

It’s often useful for a nested object’s methods and properties to refer to its enclosing
object. For this purpose we can use the special property lexicalParent. For example,

we could slightly amend our first example to:

meadow: OutdoorRoom 'meadow'
 "The ground becomes distinctly marshier to the north. "
 north: TravelMessage { ->marsh "You step cautiously from
 <<lexicalParent.theName>> into the marsh. " }
;

Going north from the meadow to the marsh would then result in the display of the
message “You step cautiously from the meadow into the marsh.”

Note that it is very easy to forget to use lexicalParent to refer to the enclosing

object when working with nested objects. This is a very common potential source of
bugs!

For further information on anonymous and nested objects see the ‘Object Definitions’
article in the TADS 3 System Manual.

5.5 Complex Containers

We left our discussion of containers at the point of talking about how to implement
objects that need more than one kind of containment, for example a table we can put
things both on and under, or a floor-standing cabinet one can put things both on and
inside. The TADS 3 solution is the ComplexContainer class. This works by

incorporating a number of sub-objects, each representing one kind of containment.
Each of these sub-objects is defined on the appropriate property of the
ComplexContainer, and needs to be defined as belonging to the ComplexComponent

class together with whatever class is appropriate to its containment type. For
example, to implement a cabinet we can put things in, on, under or behind we could
do the following:

+ cabinet: ComplexContainer 'cabinet*cabinets' 'cabinet'
 subSurface: ComplexComponent, Surface { }

84

 subContainer: ComplexComponent, OpenableContainer
 {
 bulkCapacity = 10
 }
 subRear: ComplexComponent, RearContainer { }
 subUnderside: ComplexComponent, Underside { bulkCapacity = 10 }
;

From the player’s point of view, this will appear to be a cabinet that the player can put
things in, on, under or behind. What actually happens is that there are five objects:
the cabinet itself, and four ComplexComponents representing the spaces in, on, under

and behind the cabinet. Each of these ComplexComponents automatically takes its

name from its lexicalParent, the cabinet, so that objects within these

ComplexComponents are described as being in, on, under or behind the cabinet. None

of these ComplexComponents has any vocabWords, so any commands targeted at the

cabinet will be fielded by the cabinet object; but since the cabinet is a

ComplexContainer, it automatically redirects certain actions to the objects defined on

its subXXXX properties, provided they’re present. For example, open, close, lock,

unlock, put in and look in are all directed to the subContainer; put on is redirected

to the subSurface; put under and look under are redirected to the subUnderside;

and look behind and put behind to the subRear (provided objects have been

defined on the relevant properties).

We may often want some objects to start out in one or other part of a
ComplexContainer. For example we might want a piece of paper to have slipped down

behind the cabinet, an ornamental vase to be on top of the cabinet, a mat to be inside
the cabinet, and a coin to be on the floor under the cabinet. One way of doing this
would be to define the location property of each of these explicitly:

vase: Container 'vase*vases' 'vase'
 location = cabinet.subSurface
;

paper: Readable, Hidden 'piece/paper' 'piece of paper'
 location = cabinet.subRear
;

mat: Surface 'mat*mats' 'mat'
 location = cabinet.subContainer
;

coin: Hidden 'coin*coins' 'coin'
 location = cabinet.subUnderside
;

But there is another way of doing this, which may often be more convenient. We can
instead use the + notation in the normal way, and use a special notation involving the
subLocation property and a property pointer, which (as we have seen before) is a

property name preceded by an ampersand (&); this gives a reference to the property

85

rather than the value of the property, a way of saying “we want to note that we want
to do something with this property but we don’t want to evaluate it just yet”. The
above example would then become:

+ cabinet: ComplexContainer 'cabinet*cabinets' 'cabinet'
 subSurface: ComplexComponent, Surface { }
 subContainer: ComplexComponent, OpenableContainer
 {
 bulkCapacity = 10
 }
 subRear: ComplexComponent, RearContainer { }
 subUnderside: ComplexComponent, Underside { bulkCapacity = 10 }
;

++ vase: Container 'vase*vases' 'vase'
 subLocation = &subSurface
;

++ paper: Readable, Hidden 'piece/paper' 'piece of paper'
 subLocation = &subRear
;

++ mat: Surface 'mat*mats' 'mat'
 subLocation = &subContainer
;

++ coin: Hidden 'coin*coins' 'coin'
 subLocation = &subUnderside
;

While this doesn’t save a huge amount of typing, it does make it easier to associate
objects contained in an ComplexContainer with that ComplexContainer in the way we

lay out the code.

Note that we don’t need to define all four subXXXX properties on a ComplexContainer;

we simply define whatever combination we want. So if all we want is a table we can
put things on and under and a washing machine we can put things on and in, we’d
define:

+ table: ComplexContainer, Heavy 'kitchen table*tables' 'table'
 subSurface: ComplexComponent, Surface { }
 subUnderside: ComplexComponent, Underside { }
;

+ washingMachine: ComplexContainer, Heavy 'washing machine' 'washing machine'
 subSurface: ComplexComponent, Surface { }
 subContainer: ComplexComponent, OpenableContainer
 {
 notifyInsert(obj, cont)
 {
 if(!obj.ofKind(Wearable))
 {
 "You're only meant to put clothes in there! ";
 exit;
 }
 }
 bulkCapacity = 15

86

 }
;

Note too that it’s sometimes necessary to use a ComplexContainer when at first sight

it looks as if an OpenableContainer should do the job. This is normally the case

whenever we want to give a container any components, since its components are
considered to be inside the container, and so will disappear from scope when the
container is closed. For example, suppose we wanted a briefcase with a handle and a
combination lock; we might (erroneously) try something like this:

briefcase: LockableContainer 'brown briefcase/case' 'briefcase'
 "It's a light brown case with a handle and combination lock. "
;

+ Component 'handle*handles' 'handle' // DON'T DO THIS!
;

+ Component 'combination lock*locks' 'lock' // OR THIS!
;

The problem with this is that both the handle and the lock start out inside the
briefcase, so the player can’t interact with them when the briefcase is closed (which
probably isn’t what we want at all!). Even worse, once this code is developed a little
further to make the combination lock the mechanism for unlocking the case, it’ll
become impossible to unlock it, since the combination lock will be locked inside the
very case it’s meant to unlock.

The way round this kind of situation is to make the container a ComplexContainer;

we should start out with something like this:

briefcase: ComplexContainer 'brown briefcase/case' 'briefcase'
 "It's a light brown case with a handle and combination lock. "
 subContainer: ComplexComponent, LockableContainer { }
;

+ Component 'handle*handles' 'handle'
;

+ Component 'combination lock*locks' 'lock'
;

This will then work as intended, since the handle and the lock aren’t in the
subContainer; they’ll now appear effectively on the outside of the briefcase.

Another case where we’d need to use a ComplexContainer to model an openable

container is where we want to implement the container’s door as a separate object.
For this purpose we can use the special ContainerDoor class, like this:

cupboard: ComplexContainer 'cupboard' 'cupboard'
 subContainer: ComplexComponent, OpenableContainer { }
;

87

+ ContainerDoor, Component '(cupboard) door*doors' 'cupboard door'
;

+ cheese: Food 'piece/cheese' 'piece of cheese'
 subLocation = &subContainer
;

This puts the piece of cheese inside the cupboard, and the cupboard door on the
outside of the cupboard, where it belongs.

Exercise 12: One place where you might expect to find quite a few containers of
different types in a kitchen, so try implementing one now. Your kitchen should include
a work top (fixed in place, of course), on which is a cookery book hiding a note
underneath, an apron hanging from a peg, a box full of cutlery lying in the corner, a
cooker (with a door), you can put things in, on or behind; there’s a cake in the oven,
and the instruction leaflet for the cooker has fallen down behind. On the cooker (or
stove) is a pot and a saucepan with a handle. The kitchen has a table you can put
things on or under, and under it is a red box containing a can opener (or tin opener).
Fastened to the wall is a cabinet containing a glass jar with a number of sugar cubes
in it. There’s also a soup can in it, but the full implementation of that may have to
wait. The kitchen also has a roll of paper towels you can take from the roll one at a
time (but obviously can’t return to the roll). On the wall is a clock with a
manufacturer’s label stuck on its back. When you’ve got as far as you can, compare
your version with the Containers example. To complete this exercise, you’ll need
material from the following chapter.

88

6 Actions

6.1 Taxonomy of Actions

Although there is quite some way to go to cover all the main features of TADS 3,
we’ve now covered the fundamentals of the TADS 3 world model. But that doesn’t
enable us to write any very interesting games; we can build a map and populate it
with objects, but we can’t make them do much; indeed, as yet, we can’t make them
do anything beyond their default behaviour. We can build a very basic simulation, but
we can’t make a game. What makes a work of Interactive Fiction interesting is the
way it responds to the player’s commands, and in particular, the way its responses go
beyond the basic library model. A great deal of the programming in IF consists in
defining the response to player’s commands. This chapter will lay the groundwork for
doing this. We’ll leave some of the finer details to a later chapter.

Before we can start coding responses to actions, we need to understand the types and
parts of an action. In form, commands in TADS 3 (and most IF in general) take one of
three forms:

● verb – for example look

● verb direct-object – for example take ball

● verb direct-object preposition indirect-object – for example put ball in box

In these commands, the verb part is always a verb in the imperative mood (the kind
of verb form we use for giving orders), for example go, take, put, drop. The direct-
object is generally a noun naming a game object; the direct object is the object on
which we want the command to act on directly (taking, dropping or moving the ball,
for example). Where the command involves two objects, the second object is called
the indirect object; for example the box is the indirect object in the command put
ball in box. The preposition is the word between the two objects defining how the
indirect object is involved in the command (e.g. put the ball in the box, cut the
string with the knife, or give the book to the man).

Sometimes, both English and TADS 3 allowed a variant form in which the indirect
object comes before the direct object and the preposition (normally ‘to’) is omitted;
for example give Bob the ball means give the ball to Bob; just as throw Bob the
ball means throw the ball to Bob. With commands of this kind we have to translate
the phrasing back to the longer form (including a preposition) to work out which is
direct object, and which is the indirect object.

In working with actions in TADS we’ll often see names (often of macros, which we’ll
explain shortly) containing ‘dobj’ and ‘iobj’ somewhere. It helps to recognize that
these are nearly always abbreviations for direct object and indirect object.

89

The three kinds of actions we’ve encountered so far correspond to three classes of
action in TADS 3:

● IAction - actions with a command only (and no objects), like look.

● TAction – actions with one object, the direct object, like take ball

● TIAction – actions with two objects, a direct object and an indirect object, like

put ball under table.

It’s often to useful to know what the current action is, who’s carrying it out, and what
objects are involved in it. For those purposes we can use the following pseudo-global
variables (actually macros):

● gAction – the current action.

● gActor – the actor performing the current action.

● gDobj – the direct object of the current action.

● gIobj – the indirect object of the current action.

There’s also a pair of macros (which look like functions) we can use to test what the
current action is:

● gActionIs(Something) – returns true if the current action is SomethingAction.

● gActionIn(Something, SomethingElse... YetSomethingElse) – returns

true if the current action is one of those listed.

These might be used like this:

if(gActionIs(Take))
"Don't be greedy – you're carrying quite enough already. ";

if(gActionIn(PutIn, PutOn, PutUnder, PutBehind))
"Just leave things where they are! ";

For a complete list of actions, go to the Library Reference Manual, and then click the
Actions link third along from the right. A list of actions defined in the TADS 3 library
will then appear in the bottom left-hand panel.

Amongst the actions listed are a number that look a bit like TActions or TIActions,

but are in fact something a bit different. Examples of such actions include:

● GO NORTH

● PUSH THE TROLLEY EAST

● TYPE SUGARPOP ON TERMINAL

● ASK BOB ABOUT THE WEATHER

● LOOK UP RABIES IN MEDICAL TEXTBOOK

In the first of these NORTH is not the direct object of the GO command; this is an
IAction, not a TIAction. In TADS 3 north is a direction, not a Thing (grammatically

90

it’s more like an adverb than a noun in this context). Indeed, an IF player will
normally abbreviate this kind of command to just the direction, north or n. Similarly,
the second command is not a TIAction, but a TAction; TROLLEY is the direct object

but there is no indirect object (and in particular, EAST is not the indirect object). In
the command TYPE SUGARPOP ON TERMINAL, it may look as if SUGARPOP is the
direct object and TERMINAL the indirect object, but this is not so: SUGARPOP is not
the name of an object in the game, but a string of characters (perhaps a password)
that the player wants to type on the terminal. Thus this is not a TIAction (as it might

first appear) but a LiteralTAction, in which the terminal is the direct action

(accessible as gDobj) and SUGARPOP is the ‘literal phrase’ (accessible as gLiteral).

Neither of the final two examples is a TIAction either (despite initial appearances);

the way TADS 3 defines these two actions (and others like them), THE WEATHER and
RABIES are topics, not things (since the player is not restricted to talking about things
implemented in the game). ASK ABOUT and LOOK UP are TopicTActions.

The difference between a topic and a literal may not be immediately apparent. The
difference is that a Literal is simply a piece of text, with no reference to any simulation
object in the game. A topic may just match a piece of text, but it may also refer to a
Topic object or a simulation object (we’ll talk more about Topic objects in the next

chapter). If the command had been ASK BOB ABOUT SUSAN, the action would still
have been a TopicTAction (with Bob as the direct object), even if there was an actor

called Susan implemented in the game; but even though SUSAN would, in the first
instance, be matched as an topic, a connection could also be made between this topic
and the Susan object (don’t worry if this explanation seems a little obscure right now,
we’ll unpack it further in later chapters).

The main point to note right now is that there are four more types of action:

● LiteralAction – a command consisting of a verb plus some literal text.

● LiteralTAction – a command consisting of a verb, one thing (the direct

object), and some literal text (e.g. write foo on paper).

● TopicAction – a command consisting of a verb plus one topic (e.g. talk about

the weather)

● TopicTAction – a command consisting of a verb plus one thing (the direct

object) plus one topic (e.g. tell bob about the weather).

Knowing the types of action is only the prelude to learning how to customize them,
but before we go on to that, there’s another couple of coding constructs it will be
helpful to know about.

91

6.2 Coding Excursus 9 – Macros and Propertysets

6.2.1 Macros

Several times now we’ve referred to things called macros without really explaining
what they are. Put simply, a macro is a kind of convenient abbreviation. Put a bit
more technically, a macro is a piece of text that the preprocessor replaces with a
predefined expansion before the compiler gets to work on the source file. For
example, in reality TADS 3 has no global variables. Things that look like global
variables are in reality the properties on some object (such a libGlobal). The current

action, for example, is in reality libGlobal.curAction, but the macro gAction is

defined as a convenient abbreviation for this. The current direct object is in reality
libGlobal.curAction.getDobj(), but it’s much easier just to be able to write gDobj.

Macros are defined using the keyword #define. The macros just mentioned are

defined like this:

#define gAction (libGlobal.curAction)
#define gDobj (gAction.getDobj())

In effect, these are instructions to the preprocessor (which runs just prior to
compilation), telling it that every time it sees the text gAction in the source file it

should replace it with (libGlobal.curAction), and that every time it sees the text

gDobj in the source file it should replace it with (gAction.getDobj()). Note that this

replacement is cumulative; having replaced gDobj with (gAction.getDobj()) the

preprocessor will replace gAction with (libGlobal.curAction) so that the full

expansion of gDobj becomes ((libGlobal.curAction).getDobj()); thus whenever

we write gDobj in our source code, ((libGlobal.curAction).getDobj()) is what the

compiler ‘sees’. (Macro replacement is not, however, recursive; if a macro contains its
own name in its expansion, it will not recursively expand its own name on any second
or subsequent pass).

Note also that macros only take effect in the source file in which they are defined. If
we want macros to take effect in several (or all) of our source files, we need to define
them in a header file (one with a .h extension) and then include the header file in all
our source files. This is one of the reasons why we need to put the following near the
top of all our TADS 3 game source files:

#include <adv3.h>
#include <en_us.h>

This ensures that we can use all the macros defined in the TADS 3 library. If we
defined some macros of our own we wanted to use in our own game, we might put
them in a file called myGame.h then ensure we added the following near the top of all
our source files:

92

#include "myGame.h"

We would probably use quote marks ("") rather than angle brackets (<>) here
because we’d presumably put myGame.h in the same directory as all the other source
files for our game.

Macros can be both simpler and more complicated than those we’ve seen so far. The
very simplest form of macro just defines that the macro has defined; e.g.:

#define ExtraHandsome

This can then be used to define an optional block of code that’s only compiled if the
ExtraHandsome macro has been defined:

#ifdef ExtraHandsome
 modify me
 desc = "So unbelievably handsome you can't bear to look at yourself. "
 ;
#endif

Almost as simple is a macro that just gives a symbolic name to a constant:

#define SpecialOptionCount 12

Rather more complicated is the function-type macro, which takes one or more
argument, for example:

#define Double(X) (X * 2)

This looks a bit like a function, but what actually happen is that the preprocessor
substitutes whatever value we put in for X and replaces it with that value in the
expansion. For example, if the preprocessor encounters Double(3) it will replace it

with (3 * 2) before the compiler gets to work on it.

Function-type macros can also use token pasting to construct a programming token
out of its arguments, using the ## token pasting symbol. This is best explained by

means of an example. Suppose we define the following macro:

#define gActionIs(action) (gAction.actionOfKind(action##Action))

Then when the processor comes across gActionIs(Take) it will replace it with

(gAction.actionOfKind(TakeAction)) (this is actually a slightly simplified version

of the gActionIs() macro defined in the library).

The foregoing is only a quick sketch of what macros can do. To get the full story on
macros, as well as including header files and other features of the preprocessor see
the article on ‘The Preprocessor’ in Part III of the TADS 3 System Manual.

To find out what macros the library defines and what they do, click the Macros link in

93

the bar at the top of the Library Reference Manual. A list of library macros will then
appear in the bottom left-hand panel. You can scroll through this list and click on any
macro you’re interested in to see its definition, often along with a brief description of
what it’s for.

6.2.2 Propertysets

A Property Set is simply a short-cut way of defining a number of related properties
with similar names. The propertyset keyword is used to define the pattern to be

used in such a set of properties. This pattern uses an asterisk (*) as a placeholder for

the variable part of the property name. For example, suppose we wanted to define a
whole set of properties that included ‘put’ in their name; we might define:

propertyset 'put*'
{
 In(x) { moveInto(x); }
 On() { "You can't do that. " }
 Under(x) { "There's no room under <<x.theName>>. "}
 Behind(x} { }
 Msg = 'You put it somewhere. '
}

This is exactly the same as defining:

PutIn(x) { moveInto(x); }
PutOn() { "You can't do that. " }
PutUnder(x) { "There's no room under <<x.theName>>. "}
PutBehind(x} { }
PutMsg = 'You put it somewhere. '

And this, indeed, is precisely what the compiler ‘sees’.

A macro definition can be combined with a propertyset definition; for example the
library defines:

dobjFor(action) objFor(Dobj, action)
iobjFor(action) objFor(Iobj, action)
objFor(which, action) propertyset '*' ## #@which ## #@action

The effect of this somewhat arcane definition is as if we’d defined:

dobjFor(action) propertyset '*Dobj' ## #action
iobjFor(action) propertyset '*Iobj' ## #action

For example, consider the following code (of a kind that’s very common when we start
customizing and defining actions):

dobjFor(Take)
{
 preCond = [touchObj]
 verify()
 {

 if(meetsObjHeld(gActor)

94

 illogicalAlready('You are already holding it! ');
 }
 check() { }
 action()
 {
 moveInto(gActor);

 "Taken. ";
 }
}

This is exactly equivalent to:

 preCondDobjTake = [touchObj]
 verifyDobjTake()
 {

 if(meetsObjHeld(gActor)
 illogicalAlready('You are already holding it! ');
 }
 checkDobjTake() { }
 actionDobjTake()
 {
 moveInto(gActor);

 "Taken. ";
 }

What’s important here is not so much that we understand every step of the process by
which the first piece of code becomes equivalent to the second, but that we recognize
the equivalence.

For the full story on property sets, read the ‘Property Sets’ section of the ‘Object
Definitions’ article in Part III of the TADS 3 System Manual.

6.3 Customizing Action Behaviour

When it comes to customizing the behaviour of existing actions (or defining the
behaviour of new actions), actions basically divide into two kinds: those that have
direct objects (TAction, TIAction, TopicTAction and LiteralTAction) and those without

(IAction, TopicAction, and LiteralAction). The latter kind is easier to explain, so we’ll
start with that first.

6.3.1 Actions Without Objects

The behaviour of an action that has no objects is defined in the execAction() method

of the action class. To customize the behaviour of an existing action, we simply modify
the appropriate action class and override its execAction() method. For example, if

we want to customize the way the Jump action works, we might do this:

modify JumpAction
 execAction()
 {
 if(gActor.getWeight > 15)
 "You're too weighed down to jump. ";

95

 else
 "You jump vigorously, but it does no good. ";
 }
;

If we’re modifying the behaviour of an action defined in the library, it’s a good idea
first to look at how the library defines it, however. For example, the library defines
SleepAction as:

DefineIAction(Sleep)
 execAction()
 {
 /* let the actor handle it */
 gActor.goToSleep();
 }
;

So that if we want to change the way the Sleep action works, we might do better to
override the goToSleep() method on the player character object (usually me). To look

up the definition of an existing action, click on the Actions link near the left hand end
of the top bar of the Library Reference Manual. A list of actions will then appear in the
bottom left-hand pane, and you can scroll down and click on the one you’re interested
in.

6.3.2 Actions With Objects

If an action has a direct object, or both a direct object and an indirect object, then we
define the action handling on one or both of those objects, generally by using the
dobjFor() macro on the direct object and the iobjFor() macro on the indirect object

(just how we use them is something we’ll come to shortly). But what exactly do we
mean by defining the action handling on these objects?

Where an action involves a direct object, or a direct object and an indirect object, the
significant stages in handling the action are performed by calling a number of
methods on these objects; these are the methods we define with the dobjFor() and

iobjFor() macros. The direct and indirect objects of an action (where they exist) will

always be objects derived from the Thing class (either of class Thing themselves or

inheriting from Thing). The basic handling for each action therefore needs to be

defined on the Thing class, even if it’s simply a refusal to carry out the action (e.g.

displaying a message saying “You can’t eat that” in response to the Eat action). It
may then be necessary to override this basic action handling on subclasses that need
to behave differently, for example to allow objects of class Food to be eaten, or

stopping NonPortable objects from being taken and moved around. Finally, we may

often want to override the action handling on individual objects to make them behave
in a particular way; for example, if only one green button makes the airlock door slide
open, then we need to write special action handling for pressing that particular green

96

button.

We can customize action handling at any of these levels (or introduce a new level of
our own by defining custom classes). If we want to change the library’s default
handling of certain actions, we can modify the action handling on Thing or on one of

its relevant subclasses; if we need specialized handling just on a particular object, we
override the action handling just for that object.

The dobjFor() and iobjFor() macros can also be used with two pseudo-actions,

Default and All. If we define dobjFor(Default) or iobjFor(Default) handlers on a

class or action, these action handlers will be used for all actions for which we do not
provide a more specific action handler. If we define dobjFor(All) or iobjFor(All)

these will be invoked in all cases (although action-specific handling could then be
invoked as well if it has not been prevented by the All handling).

6.3.3 Stages of an Action

There’s no need to override every stage of action handling, but if we were to, our
action handling would, in outline, take the following form:

banana: Food 'banana*bananas fruit food' 'banana'
 dobjFor(Eat)
 {
 remap() { ... }
 preCond = [...]
 verify() { ... }
 check() { ... }
 action() { ... }
 }
;

Where the ... represents the particular code we’d need to write to customize the
action handling at each stage.

At a first approximation, the action handling goes through each of the remap, verify,
check, and action stages in turn. In fact, any of these stages could stop the action, so
that, for example, if we wrote a verify() routine that always stopped the action,

there would be no need to go on to write check() and action() routines (they’d

never be executed). This is only a first approximation, because the preCond property

contains a number of objects (called preconditions) defining methods that are called
either at the verify stage, or between the verify and check stages.

We’ll now look at each stage in turn.

6.3.4 Remap

The purpose of the remap stage is to divert one action into a different action. For
example, if we define a desk with a drawer, we might want open desk to be treated
as open drawer. We can achieve that like this:

97

desk: Surface, Heavy 'desk*desks' 'desk'
 "The desk has a single drawer. "
 dobjFor(Open) remapTo(Open, drawer)
;

+ drawer: OpenableContainer, Component 'drawer*drawers' 'drawer'
;

Note how the remapTo() macro is used here. If we define an unconditional

remapping in this way, there’s no point in going on to define any other parts of the
same action; open desk will be remapped to open drawer before any other part of
the open desk action can be executed. It’s also possible to carry out a conditional
remapping with the maybeRemapTo() macro. This takes an additional first argument,

an expression that controls whether the remapping takes place or not. If the
expression evaluates to nil or 0 the remapping does not occur, otherwise it does. For

example, supposing that we think that pulling the drawer should open it, but only if
the drawer is not already open. We might achieve this with:

+ drawer: OpenableContainer, Component 'drawer*drawers' 'drawer'
 dobjFor(Pull) maybeRemapTo(!isOpen, Open, self)
;

Note how in this case we use the self keyword to refer to the drawer from a method

defined on the drawer.

We can also remap actions that take two objects (i.e. a TIAction), but if we remap to a
TIAction we should normally observe the rule that one of the objects of the remapped
action should be specified as a particular object, while the other should be specified
with the placeholder DirectObject or IndirectObject, meaning the direct object or

indirect object of the original action.

For example, suppose we wanted put something in desk to remap to put
something in drawer; we’d do it like this:

desk: Surface, Heavy 'desk*desks' 'desk'
 "The desk has a single drawer. "
 dobjFor(Open) remapTo(Open, drawer)
 iobjFor(PutIn) remapTo(PutIn, DirectObject, drawer)
;

The rule as stated above is in fact a simplification of the actual rule enforced in the
library, so that it can sometimes (but not always) be violated with impunity. The full
(and more complicated) rule is that at least one of the slots in the remapped action
must be specified as a particular object, and that the first concrete object must
correspond to the object we’re remapping the action from. In practice this means we
can safely violate the "one particular object and one placeholder" rule in remappings
of the form:

 dobjFor(Whatever) remapTo(WhateverElse, self, someOtherObject)

98

In other words, whenever we’re remapping from a dobjFor(Whatever) and self
remains the direct object of the remapped command, we can put whatever we want in
the indirect object slot of the remapped command.

Note that there’s an alternative to using remap which we can use in the particular
case when we want one action to behave like another on the same object, namely
asDobjFor() or asIobjFor(). For example if we wanting attacking the desk to

behave just like breaking the desk, we could add to the desk definition:

 dobjFor(Attack) asDobjFor(Break)

Note that although this would have much the same effect in practice as defining
dobjFor(Attack) remapTo(Break, self), the underlying mechanism is a little

different. Using remapTo() cancels the current action and creates a new one; using

asDobjFor() or asIobjFor() continues the current action but makes it use the other

action’s action-handling routines.

As of version 3.0.18 there’s one further complication in the way remap behaves.
Although remapping from one action to another normally bypasses the rest of the
handling for that action, there is one exception to this. If we remap an action on a
superclass, and then provide a verify routine for the original action on a subclass or
object derived from that superclass, both verify routines will be executed (that for the
original action and for the remapped action). This doesn’t enable us to allow an action
that would otherwise be excluded, but it does enable us to forbid an action that would
otherwise be allowed, or to adjust its logical rank (see on verify below); the effect of
the two verify routines will be cumulative. For example, suppose we have:

modify Thing
 dobjFor(Turn) remapTo(Take, self)
;

ball: Thing 'ball' 'ball'
 dobjFor(Turn)
 {
 verify() { logicalRank(120, 'ball'); }
 }
;

If the player were to issue the command turn ball, then both verifyDobjTurn() and
verifyDobjTake() would be run on the ball. If the ball were not already held, this would
make it a particularly strong candidate for being turned (and hence taken); but if the
player already had the ball the illogical ranking from verifyDobjTake() would trump the
logicalRank from verifyDobjTurn() and the ball would no longer be preferred. Don’t
worry if that doesn’t make too much sense to you just yet, it’s a feature you’re
unlikely to need to make use of for a while, and it may make just a little more sense
once you’ve read the next section, on Verify.

99

6.3.5 Verify

The verify stage has two purposes:

● To help the parser decide which objects are the most suitable targets for the
current command.

● To explain why the command may not be carried out with this object if the
verify routine decides to disallow it.

In the language of TADS 3, the purpose of a verify routine is to decide whether or not
an action with this object is logical, and how logical or illogical it is. In cases of
ambiguity (e.g. take ball when there’s a red ball, a blue ball, and a green ball all in
scope), the parser will choose the most logical object in scope. If it finds a tie for first
place (i.e. more than one object has the most logical – or least illogical – score) it will
prompt the player to stipulate which object he or she means. In this case ‘logical’
means ‘logical from the perspective of the player’ (the point is to try to guess what
the player most probably meant). So, for example, if there’s a large stone ornamental
ball on a plinth, a small red rubber ball lying on the ground, and a golf ball in the
player’s hand, take ball is most likely to refer to the small red rubber ball (the large
stone ball is rather obviously untakeable and the player already has the golf ball).

The simplest form of a verify() routine is one that does nothing; far from being
pointless this means that the action is allowed to go ahead with this object; it’s a
perfectly logical choice of object for this command. It’s useful to define empty verify
methods to allow actions the library would otherwise have ruled out as illogical, for
example:

banana: Thing 'banana*bananas fruit food' 'banana'
 dobjFor(Eat)
 {
 verify() {}
 }
;

knife: Thing 'knife*knives' 'knife'
 iobjFor(CutWith)
 {
 verify() {}
 }
;

We can’t eat ordinary things, but we can eat a banana (of course it would have been
simpler to define the banana as a Food here, but we’re just illustrating the principle);

in general the library won’t let us use things to cut other things with, but a knife
presumably can be used for cutting.

It’s almost as simple to use verify to rule out an action. In the simplest case we use
the illogical() macro, which also needs to state why the action is being disallowed;

for example:

100

knife: Thing 'knife*knives' 'knife'
 dobjFor(Eat)
 {
 verify() { illogical('You lack training to swallow a knife safely'); }
 }
;

We can also disallow actions conditionally, depending on the game state, for example:

banana: Food 'banana*bananas fruit food' 'banana'
 hasBeenPeeled = nil
 dobjFor(Eat)
 {
 verify()
 {
 if(!hasBeenPeeled)
 illogicalNow('You\'ll have to peel it first. ');
 }
 }
;

Note that in this instance we use illogicalNow() rather than just illogical();

eating a banana isn’t illogical per se, it’s just illogical to attempt it until the banana
has been peeled. The point of using a different macro here is that eating the unpeeled
banana would be less illogical than attempting to eat the ornamental stone banana on
the sculpture, say, so that the we still want the parser to prefer the fruit to the
sculpture even when the fruit is unpeeled.

A third kind of verify routine allows an action to proceed, but adjusts its logical
ranking, either up or down from the default of 100. For example, if at some point in
the game the protagonist is romantically attracted to a particular NPC (let’s call her
Mary), then other things being equal, she’s the most likely target of a Kiss action, so
we might define:

mary: Person 'mary/woman*women' 'Mary'
 isHer = true
 isProperName = true
 dobjFor(Kiss)
 {
 verify() { logicalRank(120, 'beloved'); }
 }
;

With this definition, kiss woman will be taken to mean kiss mary even if other
women are present, although an explicit kiss anne command (say) will still be
allowed (provided Anne is present to be kissed). As is apparent from this example, the
logicalRank() macro takes two arguments: the first is the logical rank score, with

100 being the default, so that giving something a logical rank of more than 100
makes it a likely target of the command, while decreasing it below 100 makes it a
possible but not likely target; the library assumes that logical ranks will generally be
in the range 50-150. The second argument (in this example 'beloved') is a key; this is

101

an arbitrary string which you can use to define the quality you’re ranking, so that if
the parser is trying to break a tie it can compare logical ranks assigned to the same
key. It seldom matters much in practice in our own game code what we put here, so
long as we put something, but it’s probably a good idea to get into the habit of using
something meaningful.

There are a number of macros we can use within verify routines. As a quick rule-of-
thumb, those whose name starts with the letter i disallow the action (with this object)
altogether, while the rest allow the action to go ahead with this object but vary the
likelihood of the parser choosing it as a target for the command. The complete list
(slightly simplified) is:

● logical – equivalent to assigning a logical rank of 100, or defining an empty

verify statement. This is provided so that we can make it explicit that we’re
allowing an action, which may be particularly useful when our verify routine
contains a number of conditional branches.

● illogical(msg) – disallow this action with this object, because the object is

never suitable (e.g. trying to cut something with a banana); the msg parameter
explains why we’re disallowing the action (msg can be a single-quoted string or
a message property; we’ll talk about message properties in a later chapter).

● illogicalAlready(msg) – disallow this action with this object because we’re

trying to bring about a state that already exists (e.g. opening a door that’s
already open).

● illogicalNow(msg) – disallow the action because it’s inappropriate while the

object is in its present state (e.g. trying to eat an unpeeled banana), or possibly
because it’s inappropriate while some other part of the game world is in its
present state.

● illogicalSelf(msg) – disallow the action where the direct and indirect objects

are the same and the object can’t carry out the action on itself, e.g. cut knife
with knife.

● inaccessible(msg) – disallow the action because the object isn’t accessible

(even though it’s in scope).

● dangerous – allow the action to be carried out if the player explicitly insists on

it, but not otherwise (e.g. as an implicit action or as the result of the parser
choosing a default object). This is intended for actions that the player would
perceive as obviously dangerous, such as breaking a glass jar full of poisonous
gas, to prevent them being carried out by accident.

● nonObvious – similar to dangerous, but intended to prevent a player solving a

puzzle by accident by using an unobvious object to carry out a command even
though it may in fact be the correct solution, e.g. unlock case with
toothpick.

102

Fuller details are available in the other documentation we’ll mention at this end of this
section. In the meantime there are a few more points to note about verify routines:

● Verify routines should never change the game state, and never display any text
except via the macros just listed. A verify routine may be run several times
during object resolution and command execution.

● It’s perfectly okay for a verify routine to produce more than one result; the one
that counts will be the least logical one currently applicable.

● It’s therefore safe to use the inherited keyword to use the inherited behaviour

of a verify routine and then add further cases of your own.

● A verify routine should thus contain nothing apart from one or more of the
macros listed above, the inherited keyword, and flow control statements

(such as if).

6.3.6 Check

The only role of a check routine is to disallow actions (if they need to be disallowed).
At first sight this may seem the same as ruling out an action with an illogical

macro at the verify stage. The difference is that ruling out an action at the check
stage doesn’t affect the parser’s choice of object.

For example, suppose the player character is a woman wearing a dress. Removing the
dress is not illogical, insofar as the dress is a perfectly sensible target of a Doff
command, but we might nevertheless not want to allow it. We could therefore write:

me: Actor
;

+ Wearable 'dress*dresses clothes' 'dress'
 wornBy = me
 dobjFor(Doff)
 {
 check()
 {
 reportFailure('It would be quite unseemly to strip in public. ');
 exit;
 }
 }
;

Note the use of the exit macro to stop the action in its tracks at this point, and the

reportFailure() macro to explain why we’re stopping it. It’s not strictly necessary to

use reportFailure() - we could legally use a double-quoted string here (unlike

verify) – but using reportFailure() is a good habit to get into (it helps the transcript

work a little better). Using the combination of reportFailure() and exit in a check

method is so common, that Thing defines a failCheck() method to do both in a

single command; the previous example could be written:

103

+ Wearable 'dress*dresses clothes' 'dress'
 wornBy = me
 dobjFor(Doff)
 {
 check()
 {
 failCheck('It would be quite unseemly to strip in public. ');
 }
 }
;

Check routines should generally be used for no other purpose than this (or to be
overridden to do nothing in order to allow an action to go ahead when inheriting from
something that would have prevented it), although it is, of course, perfectly legal to
rule out an action conditionally in check. For example, if we wanted our player
character to be able to remove her dress in her own bedroom but nowhere else, we
could rewrite the previous example as:

+ Wearable 'dress*dresses clothes' 'dress'
 wornBy = me
 dobjFor(Doff)
 {
 check()
 {

if(!me.isIn(myBedroom))
 failCheck('It would be quite unseemly to strip in public. ');
 }
 }
;

Check routines should not display text other than to explain why an action is being
forbidden, nor should they change the game state (with one possible exception: it’s
perfectly okay for a check routine to set a flag the sole purpose of which is to show
that the check routine has been run, so that we can later test whether the player
attempted a certain action even though it did not succeed).

For more guidance on the difference between check and verify, see the article on
‘Verify, Check and When to Use Which’ in the TADS 3 Technical Manual.

6.3.7 Action

Once action processing has survived the remap, verify, check (and possibilities
precondition) stages, we’re ready to actually carry out the action. That’s what the
action stage is for: to make the appropriate changes to the game state and report
what’s happened. This can be as simple or as complicated as we like. At its simplest
an action routine may simply report that nothing very much happened as a result of
the action:

+ Button 'green button*buttons' 'green button'
 dobjFor(Push)
 {
 action() { "You push the green button but nothing happens. "; }

104

 }
;

More usually, we’d want some change to result from the action. For example, if the
green button controls a sliding door, we’d want pushing it to open the door when
closed and close the door when open:

+ Button 'green button*buttons' 'green button'
 dobjFor(Push)
 {
 action()
 {
 slidingDoor.makeOpen(!slidingDoor.isOpen);
 "You push the green button and the door slides
 <<slidingDoor.openDesc>>. ";
 }
 }
;

One complication occurs when the action involves two objects, e.g. cut banana with
knife. In such a case we have to decide whether to define the action handling on the
direct object or the indirect object. Although it would be possible to implement part of
the handling on one and part of it on another, this is likely to lead to confusion unless
we’re very sure what we’re doing. In general it’s probably a good idea to define the
action handling on the object that makes most difference to the outcome. For
example, if there’s only one item in the game capable of cutting things, or if all the
cutting objects behave in much the same way, but cutting different things (the butter,
the banana, the glass case, and Aunt Beatrice, say) has substantially different results,
it’s probably best to define the action handling on the direct object of CutWith
commands. If however, it makes a huge difference whether you cut things with the
butter knife or the dagger or the Magic Diamond Sword, then if may be better to
define the action handling on the indirect object (if both the object cut and the object
used to cut it with make a significant difference, then we just have to make an
arbitrary choice of one or the other and stick with it).

We can more or less put whatever code we like in an action routine, provided it gets
the job done. It’s always worth remembering to use the inherited keyword where we

want the default handling to take place but just want to customize it slightly, e.g.:

vase 'delicate antique glass vase*vases' 'antique vase'
 dobjFor(Drop)
 {
 action()
 {
 inherited;
 "You set the glass vase down <i>very</i> carefully. ";
 }
 }
;

105

Here we want drop vase to have its normal effect, we just want it reported
differently. Since the library uses the defaultReport() macro to produce the

standard laconic ‘Dropped’ message, this message will automatically be suppressed in
favour of our more appropriate custom message (we can similarly use the
defaultReport() macro when defining such reports for our own custom actions).

There are a number of other macros we can use to generate reports: mainReport(),

reportAfter(), reportBefore() and extraReport(), but most of the time we can

just use a double-quoted string to say whatever we want to say in an action routine.
It’s also legal to use reportFailure() or failCheck() in an action routine if we want

the outcome to be considered a failure.

Two other macros it’s useful to know about in relation to action routines are
nestedAction() and replaceAction(). Both of these can be used to carry out some

other action; the difference is that the action routine will continue after
nestedAction() but not after replaceAction() (which stops the current action). For

example, suppose we have a button controlling a sliding door, but after the player has
discovered that the door can be opened by pressing the button, we want open door
to be redirected to push button provided the door isn’t already open. We might write
something like this:

+ slidingDoor 'sliding door*doors' 'sliding door'
 hasBeenOpened = nil
 makeOpen(stat)
 {
 inherited(stat);
 if(stat)

 hasBeenOpened = true;
 }

 dobjFor(Open)
 {
 verify()
 {
 if(isOpen)

 illogicalAlready('It\'s already open.);
 }
 check()
 {
 if(!hasBeenOpened)
 failCheck('You\'ll have to work out how to open it. ');
 }
 action()
 {
 replaceAction(Push, greenButton);
 }
 }
;

6.3.8 Precondition

The final part of action-handling we need to look at is preCond, short for precondition.
Often in Interactive Fiction one (relatively mundane) action needs to be carried out in
order to allow another one to go ahead. In order to put the banana in the box, I first

106

need to be holding the banana; in order to go through the door, I first need to open it;
in order to open the door, I first need to unlock it. If I can’t hold the banana, or open
the door, or unlock the door, the main action cannot go ahead. In other cases some
condition just needs to be true for the main action to proceed; I need to be able to
see the book or the rug before reading the book or examining the rug.

These standard conditions are implemented in TADS 3 via PreCondition objects.

These objects instantiate often-used preconditions by defining two methods:
verifyPreCondition() and checkPreCondition(). The first of these is called at the

verify stage, and basically adds further conditions that can rule out an action
altogether (e.g. if it’s too dark to see by) or can change its logical ranking. The second
is called between verify and check, and can carry out an implicit action (like taking the
banana to allow the player to put it in the box) which allows the main action (putting
the banana in the box) to go ahead. If the necessary condition already obtains (the
player is already holding the banana), then checkPreCondition() method has

nothing to do. If the necessary condition doesn’t hold (the player isn’t yet holding the
banana, say), the method tries to bring it about through an implicit action (the kind of
action that’s reported as “(first taking the banana)”) and then tests to see if the
condition now obtains (since something may have prevented the actor from taking the
banana). If it does not, the precondition fails the action; otherwise, it can go ahead.

The library defines a number of precondition objects, the most commonly-used of
which include:

● objVisible – the object must be visible to the actor for the action to proceed.

● objHeld – the actor must be holding the object for the action to proceed (an

implicit take action is attempted if not).

● objOpen – the object must be open for the action to proceed (an implicit open

action is attempted if not).

● objClosed – the object must be closed for the action to proceed (an implicit

close action is attempted if not).

● objUnlocked – the object much be unlocked for the action to proceed (an

implicit unlock action is attempted if not).

● touchObj – the actor must be able to touch the object for the action to

proceed.

● actorStanding - the actor must be standing for the action to proceed (an

implicit stand action is attempted if not).

● doorOpen – like the objOpen precondition but caters for the case where the

actor can’t see the door.

For a complete list, see the article we’ll refer to shortly.

To use these preconditions, we simply need to list them in the appropriate preCond

107

property. For example, in order to eat the banana we’d probably need to be holding it,
so we might define:

banana: Edible 'banana*bananas fruit food' 'banana'
 dobjFor(Eat)
 {
 preCond = [objHeld]
 action()
 {
 "Well, that tasted good! But it's all gone now! ";
 moveInto(nil);
 }
 }
;

This has been a very rapid outline of customizing actions, both to avoid the essentials
becoming lost in a mass of detail, and also because most of the detail is amply
documented elsewhere. We shall examine some of the other details in a later chapter,
but in the meantime, if you have not already done so, now might be a good time to
read the ‘Action Results’ article in the TADS 3 Technical Manual. If you want more
information after that, you could also read the ‘Controlling the Action’ section of
Chapter 4 of Getting Started in TADS 3.

6.4 Coding Excursus 10 – Switching and Looping

Now that we’ve been introduced to action handling, we’ll have much more occasion to
write procedural code. This thus seems a good point at which to introduce some of
the other main coding constructs.

6.4.1 The Switch Statement

We can, if we like, nest if statement to any depth, but when we’re basically just
testing the same variable against a number of different possible values, it can become
a little cumbersome. For example:

modify JumpAction
 execAction()
 {
 if(gActor.getOutermostRoom == bedroom)
 "You'd better not, you might wake your Aunt Maude next door. ";
 else if(gActor.getOutermostRoom is in (cellar, lowPassage))
 "Ouch! You bang your head on the ceiling. ";
 else if(gActor.getOutermostRoom == attic)
 {
 "You land back on the rotten floor and fall through to the
 bedroom below; luckily, landing on the bed breaks your fall. ";
 gActor.moveIntoForTravel(spareBed);
 gActor.makePosture(lying);
 gActor.lookAround(true);
 }
 else
 "You jump up and down, uselessly expending energy. ";
 }

108

;

In this kind of case we’d be better off using a switch statement. This tests the value

of a variable, and then executes a different branch depending which case statement is

matched. Note that we need to use a break statement between one case and the next

to prevent falling through, unless we actually want to fall through to the next case (as
we do with the cellar). The general form of a switch statement is:

switch(expr)
{
 case a: ...
 case b: ...
 default: ...
}

There can be as many case statement as we like, but only one default statement

(which defines what happens if no case statement is matched). The values following

the keyword case must be constants. Using a switch statement our example

becomes:

modify JumpAction
 execAction()
 {
 switch(gActor.getOutermostRoom)
 {
 case bedroom:
 "You'd better not, you might wake your Aunt Maude next door. ";
 break;
 case cellar:
 case lowPassage:
 "Ouch! You bang your head on the ceiling. ";
 break;
 case attic:
 "You land back on the rotten floor and fall through to the
 bedroom below; luckily, landing on the bed breaks your fall. ";
 gActor.moveIntoForTravel(spareBed);
 gActor.makePosture(lying);
 gActor.lookAround(true);
 break;
 default:
 "You jump up and down, uselessly expending energy. ";
 break;
 }
;
For more details, see the section on ‘switch’ in the ‘Procedural Code’ article in the
TADS 3 System Manual.

6.4.2 Loops

TADS 3 defines four kinds of loop, one of which (foreach) we’ll leave to a later

chapter. The other three are while, do...while, and for.

109

The format of the while loop is basically:

while(cond)
 loopBody

Where loopBody is a single statement or block of statements that continues to be
executed while cond is true. For example:

local i = 0;
while (i <= 10)
{
 i++;
 "<<i>>\n";
}

This would cause the numbers 1 to 10 to be displayed in a vertical column.

The do ... while loop is similar, except that the test is made at the end. The format

is:

do
 loopBody
while(cond);

For example:

local i = 0;
do
{
 i++;
 "<<i>>\n";
}
while (i <= 10)

This would do much the same as the first example. The only difference is that if the
first statement in each example set i to some value greater than 10, the do...while

loop would still execute once (so we’d see one number displayed) whereas the while

loop would not (so we wouldn’t see anything displayed from it).

The final loop type is the for loop. This is the most complex and powerful of the

three. Its general form is:

for(initializer; condition; updater)
 loopBody

Once again, loopBody is a statement or block of statements that is repeatedly
executed while the loop is active. The initializer initializes the value of one or more
loop variables. The loop continues executing while condition remains true. The
updater is used to change the value of the loop variable(s). So, for example, our
previous examples could have been written:

110

for(local i = 0; i <= 10; i++)
 "<<i>>\n";

The for loop can take also take the form of for..in or for..in range. For example,

the loop in the previous example could be written:

for(local i in 1..10)
 "<<i>>\n";

With all three types of loop it’s essential to make sure that they end somehow, so that
we don’t end up putting the game in an infinite loop. For example, the following loop
would go on forever, causing our game to hang:

local i = 0;
while (i <= 10)
{
 "<<i>>\n";
}

There is, however, another way out of a loop, and that’s to use a break statement.

The following example will only print the numbers from 1 to 10:

local i = 0;
while (i <= 1000)
{
 i++;
 "<<i>>\n";
 if(i >= 10)
 break;
}

The break statement (usable with all four kinds of loop) takes program execution

straight out of a loop. Its complement is the continue statement that makes

execution jump to the next iteration, skipping over the rest of the loop. The following
example will also only print the numbers 1 to 10, although it might cause a bit of a
pause after displaying the number 10:

local i = 0;
while (i <= 1000)
{
 i++;
 if(i >= 10)
 continue;
 "<<i>>\n";
}

For more details of these loops, see the ‘Procedural Code’ chapter of the TADS 3
System Manual.

111

6.5 Defining New Actions

Being able to modify the responses to existing actions is useful, but most works of IF
normally require at least a few completely new actions as well. There are generally
three steps to defining an action: (1) defining the new action class; (2) defining the
grammar that triggers the action; and (3) writing code to handle the action.

Defining a new action class is generally just a matter of using the appropriate
DefineXXXAction macro. The name of the macro we need to use is generally the

name of the action class preceded by ‘Define’. For example, suppose we want to
define a new TAction (an action taking a single, direct, object) which will respond to
commands like cross so-and-so (as in cross the road or cross the bridge). To
define the new action class we’d just write:

DefineTAction(Cross);

Similarly, if we wanted to define a new TIAction (an action taking two objects, a

direct object and an indirect object) we’d just define, say:

DefineTIAction(OpenWith);

If we want to define a new action that takes no objects at all, such as an IAction, we
have to do a little more work; or rather we need to combine the first and third steps in
the same definition, for example:

DefineIAction(Think)
 execAction()
 {
 "You think as hard as you can, but it doesn't seem to do much good. ";
 }
;

In practice we might want to code a more interesting and varied response, but the
principle remains the same.

The second step is to define the grammar that will match these actions, in other
words the pattern of words the player needs to type to make our new action happen.
To do that we use a VerbRule() macro. For example, to make cross so-and-so

match our new CrossAction we could define:

VerbRule(Cross)
 'cross' singleDobj
 : CrossAction
 verbPhrase = 'cross/crossing (what)'
;

Here singleDobj is a grammar token (or rather, a macro expanding into one) that

matches a single noun, the direct object. If we wanted it to be possible to cross
several things at once, we could use dobjList here instead, but crossing is the kind of

112

action you can only do to one object at a time, so singleDobj seems the better

choice here. The first part of the definition thus states that this grammar will match
commands consisting of the word cross followed by the name of a single noun. The
next line, a colon followed by the the action class name, defines the action with which
this VerbRule is associated. Although we called it VerbRule(Cross), this doesn’t

automatically associate it with the DefineTAction(Cross) we used earlier. The tag we

attach to a VerbRule is just an arbitrary name (which needs to be unique among

VerbRule tag names); it is, however, convenient to give it a name identical or at least

similar to the corresponding action so we can easily see which VerbRule goes with

which action.

If a colon followed by an identifier looks a bit like the part of an object definition
where we list the classes an object inherits from; that’s no accident, we are in fact
defining the VerbRule (or rather the underlying grammarProd, but we won’t let that

worry us too much) as being of the CrossAction class. This is what associates it with

the CrossAction (when we use DefineTAction(Cross) to define a new action we in

fact define a new action class called CrossAction).

Following the class name, we can define properties and methods in the normal way,
but the only property we generally need to define here is the verbPhrase; the library

uses this to construct message relating to the action such as “What do you want to
cross?” or “(first crossing the river)”. The format of the verbPhrase string is generally

'infinitive/participle (placeholder)'. The infinitive (actually the infinitive less ‘to’) is the
form of the verb that follows ‘to’ in phrases such as “What do you want to...”; the
participle is the form of the verb ending in “ing”, and the placeholder is usually the
interrogative pronoun (‘whom’ or ‘what’) we want used in posing questions about the
action (“Whom do you want to ask?” or “What do you want to cross?”).

We might want to tweak this VerbRule a little further, since there are more ways of

phrasing the command than just cross street; we might, for example, want the
phrasing walk across street and go across street to trigger the same action. We
can do this by using a vertical bar (|) to separate alternatives, and parentheses to
group them, so that our VerbRule would become:

VerbRule(Cross)
 ((('walk' | 'go') 'across') | 'cross') singleDobj
 : CrossAction
 verbPhrase = 'cross/crossing (what)'
;

If we’re defining an IAction our VerbRule can generally be a bit simpler:

VerbRule(Think)
 'think' | 'ponder' | 'cogitate'
 : ThinkAction
 verbPhrase = 'think/thinking'
;

113

Conversely, if we’re defining a TIAction we need a token for the indirect object as well
as the direct object, for example:

VerbRule(OpenWith)
 'open' dobjList 'with' singleIobj
 : OpenWithAction
 verbPhrase = 'open/opening (what) (with what)'
;

Here the use of dobjList allows us to try to open several objects at once with the

same indirect object. It would also be legal (though in practice far less usual) to use
iobjList, but we cannot use both dobjList and iobjList in the same VerbRule. A

command like open the soup can, the beer bottle, and the paint tin with the
can opener, the bottle opener and the screwdriver would just be too convoluted
to handle.

The third stage is to define what the action does. If the action doesn’t have any
objects, we’ll have done that already in the execAction() method of the action class

when we defined it (see above). If it does have any actions we must define at least
minimal handling on the Thing class (to trap attempts to try the action out on objects
we never intended it for). For example:

modify Thing
 dobjFor(Cross)
 {
 preCond = [touchObj]
 verify() { illogical(cannotCrossMsg); }
 }
 cannotCrossMsg = '{That dobj/he} {is} not something {you/he} can cross. '

 dobjFor(OpenWith)
 {
 preCond = [touchObj]
 verify() { illogical(&cannotOpenMsg); }
 }

 iobjFor(OpenWith)
 {
 preCond = [objHeld]
 verify() { illogical(cannotOpenWithMsg); }
 }
 cannotOpenWithMsg = '{You/he} cannot open anything with {that iobj/him}. '
;

There are several things to note about this example. First, we could have just defined
the failure messages directly, for example with:

 dobjFor(Cross)
 {
 preCond = [touchObj]
 verify()
 {
 illogical('{That dobj/he} {is} not something {you/he} can cross. ');
 }
 }

114

The reason for not doing it that way is that it makes it so much easier to customize
the message for special cases, for example:

river: Fixture 'river*rivers' 'river'
 cannotCrossMsg = 'You can\'t walk on water! '
;

This is rather more convenient than having to redefine the dobjFor(Cross) verify()

method on the river object.

Note, however, that when we came to define dobjFor(Open) we preceded

cannotOpenMsg with an ampersand: illogical(&cannotOpenMsg). We’ll give a full

explanation of this is a later chapter; the brief explanation is that we’re borrowing the
library’s cannotOpenMsg, which is defined on playerActionMessages, and this is how

we do it (if we use a property pointer in this context, the library assumes we want to
use a property of the appropriate message object).

Another point to note is that our messages contain lots of strange looking pieces of
text in curly braces, like {you/he} or {That dobj/he}. These are message parameter

strings. When the text is actually displayed the library substitutes text appropriate to
the circumstance. For example {you/he} becomes just ‘you’ if the player character is

carrying out the action, or the name of the actor, e.g. ‘Bob’, if an NPC is carrying out
the action. Similarly {That dobj/he} becomes either ‘That’ or ‘Those’ depending on

whether the direct object is singular or plural. The string {is} expands into either ‘is’

or ‘are’ in order to agree with its subject, and we can use {s} or {es} at the end of

other verbs to secure similar agreement, e.g. ‘{You/he} put{s} down {the

dobj/him}. ’ Using these message parameter strings helps makes our responses as

general as possible. Other commonly useful ones include:

● {the dobj/he} – the name of the direct object preceded by the definite article

(‘the’)

● {a dobj/he} – the name of the direct object preceded by the indefinite article

(‘a’ or ‘an’)

● {it dobj/he} – the correct pronoun for the direct object in the subjective case

(‘he’, ‘she’, ‘it’ or ‘they’)

● {it dobj/him} – the correct pronoun for the direct object in the objective case

(‘him’, ‘her’, ‘it’ or ‘them’)

These all work with iobj or actor in place of dobj (to refer to the indirect object or the
actor), and can be made to work with any object whatsoever provided it has an
appropriate parameter name. For example, if we define:

+ banana: Food 'banana*bananas fruit food' 'banana'
 globalParamName = 'banana'
;

115

We can then use parameters substitution strings like {the banana/he} or {it

banana/him}. We can also temporarily assign a parameter string to a local variable

representing an object using the gMessageParams() macro, for example:

 talkAbout(obj)
 {
 gMessageParams(obj)
 "{The obj/he} {is}, in your opinion, utterly hideous. ";
 }

Note that if we start a message parameter string with a capital letter, its substitution
will also start with a capital letter.

For the full story on message parameters, including a list of all the ones the library
defines, see the article ‘Message Parameter Substitutions’ in the TADS 3 Technical
Manual. If you’re thinking of writing a game in the past tense, or one that switches
between tenses, you might also like to read the article on ‘Writing a Game in the Past
Tense’ also in the Technical Manual, but unless that’s an urgent concern for you, you
might want to leave it for now.

The final thing to note about our example (now a couple of pages back) is that we
assumed that you have to be able to touch something in order to cross it or open it
with something else, but you have to be holding something in order to use it to open
something else with.

One further stage would be to define the handling on objects or classes where we
want our new actions to actually do something. For example, we might define a
Crossable class for which the command cross x takes us to some other location (e.g.
the other side of the bridge):

class Crossable: Enterable
 dobjFor(Cross)
 {
 verify() { }
 action()
 {
 "{You/he} set{s} out across {the dobj/him}. ";
 replaceAction(TravelVia, connector);
 }
 }
;

Of course, if there was only one crossable object in the entire game, we probably
wouldn’t bother to do this; we’d simply define the handling directly on that object; but
as soon as we want similar handling on more than one object it’s worth considering
defining a new class (or modifying an existing one).

We have here given a somewhat compressed account of defining new actions; for a
fuller account, read the article on ‘How to Create Verbs’ in The TADS 3 Technical
Manual.

116

Exercise 13: Now that you’ve seen how to implement actions, you can finish off the
previous exercise. Return to your kitchen and make the can opener able to open the
can of soup. Put some soup in the can that can be poured into appropriate objects
(but not elsewhere). Implement a pencil sharpener and some pencils, so that only
pencils can be put in the sharpener, and the sharpener actually sharpens the pencils.
Define some grammar so that it’s possible to hang an apron on the peg. Customize
eating the cake. If any other ideas occur to you, by all means try them too! Then
compare your results with the containers.t example.

117

7 Knowledge

7.1 Seen and Known

7.1.1 Tracking What Has Been Seen

It is sometimes useful to keep track of what objects the player character has seen,
and which he or she knows about. This can be particularly useful when we come to
implement conversations (where what the player knows may well affect what’s said)
or hint systems, but it can be relevant to other aspects of the game besides.

A TADS 3 game keeps track of what the player character has seen. By default the
seen property of every object is set to true when the player sees it. The library is

pretty good at catching most situations in which a player first sees something, but it
may miss one or two, in particular when we move an object into the player’s location
with moveInto(). The obvious way to mark an object as having been seen in such a

situation (assuming the player character can see it) is simply to set the seen property

to true. A safer way is to use gPlayerChar.setHasSeen(obj) (where obj is the object

the player character has just seen); this can be abbreviated to the macro
gSetSeen(obj). Likewise, while we might test obj.seen to see whether obj has been

seen, it’s probably a good idea to get into the habit of using
gPlayerChar.hasSeen(obj) or me.hasSeen(obj).

The reason for this is that while the seen property is the default property used by the

library to track what the player character has seen, we can change it to something
else. The reason we might want to do this is to track what NPCs have seen separately
from what the player character has seen; by default the library uses the seen property

for every actor in the game, although it only actively tracks what the player character
has seen. By default, then, actor.hasSeen(obj) will return the same value for every

actor in the game, which will be the correct value only for the player character.
Likewise, actor.setHasSeen(obj) will set the same property (seen) for every actor in

the game, which is almost certainly not what we want if we’re bothering to track what
actors other than the player character have seen.

If we want to track what different actors have seen (which, in the majority of games,
we probably won’t) we can redefine what property to use for the purpose. We do this
by changing the actors’ seenProp property to something other than &seen, the

default. For example, if want to keep track of what two NPCs, Bob and Carol, have
seen, we might define:

bob: Person 'bob/man' 'Bob'
 isProperName = true
 isHim = true
 seenProp = &bobHasSeen
;

118

carol: Person 'carol/woman' 'Carol'
 isProperName = true
 isHer = true
 seenProp = &carolHasSeen
;

modify Thing
 bobHasSeen = nil
 carolHasSeen = nil
;

Note the ampersands (&) before the property names here. If we wrote seenProp =

bobHasSeen we’d be setting the value of bob.seenProp to the value of

bob.bobHasSeen, which isn’t what we want at all. What we want to do is to tell TADS

3 to use the bobHasSeen property of Thing to keep track of what things Bob has seen;

for this purpose we need to use a property pointer, which we obtain by preceding the
property name with &.

Once we’ve done this bob.setHasSeen(obj), carol.hasSeen(obj) and the like will

use the appropriate properties of Thing, so we can keep track of what Bob and Carol
have seen separately from what the player character has seen. Note, however, that
the library won’t actually mark things as seen by Bob and Carol for us; that’s
something we’ll have to take care of for ourselves by calling bob.setHasSeen(obj)

and carol.setHasSeen(obj) whenever Bob and Carol see things.

7.1.2 Tracking What Is Known

People don’t necessarily have to have seen something to know about it, so we can
keep track of what the player character (and optionally, other NPCs) know about
separately from what they have seen. Thing defines a known property, analogous to

the seen property which we have just met. We can set the known property for the

player character using gPlayerChar.setKnowsAbout(obj) or the macro

gSetKnown(obj). We can similarly test what the player character knows about using

gPlayerChar.knowsAbout(obj) or, often enough, me.knowsAbout(obj). By default,

known is nil on everything, but if the player character starts out the game knowing

about several things, we can define known as true on those objects.

Although we can know about things without having seen them, once we’ve seen them,
we know about them (at least, to the extent of knowing that they exist, which is the
kind of knowledge TADS 3 effectively models). Thus, gPlayerChar.knowsAbout(obj)

returns true either if known is true, or if the player character has seen obj, or if the

player character can currently see obj.

Just as we can keep separate track of what different NPCs have seen, we can also
keep track of what they know, this time by overriding their knownProp:

119

bob: Person 'bob/man' 'Bob'
 isProperName = true
 isHim = true
 seenProp = &bobHasSeen
 knownProp = &bobKnows
;

carol: Person 'carol/woman' 'Carol'
 isProperName = true
 isHer = true
 seenProp = &carolHasSeen
 knownProp = &carolKnows
;

modify Thing
 bobHasSeen = nil
 bobKnows = nil
 carolHasSeen = nil
 carolKnows = nil
;
Note that even if we’re not particularly interested in tracking what NPCs have seen,
we have to define a separate seenProp for them if we want to track their knowledge

separately (or else test the bobKnows and carolKnows properties directly). The

reason for this is that actor.knowsAbout(obj) will be true, as we’ve just said, either

if the appropriate knownProp is true or if the appropriate seenProp is true. But if we

hadn’t overridden bob.seenProp, then it would still be seen, which keeps track of

what the player character has seen; this would mean that bob.knowsAbout(obj)

would be true for every obj that the player character has seen.

One way round this if we want to keep track of what NPCs know about, but not what
they have seen (which may be quite a common requirement), is to override seenProp

for the player character only, e.g.:

me: Actor
 seenProp = &meHasSeen
;

modify Thing
 meHasSeen = nil
;

If we do that, the player character will use a different property to track what s/he has
seen from that used by all NPCs (which will still be using seen). There is then no need

to define a separate seenProp for the NPCs unless we actually want to track what

they’ve each individually seen. But then we must remember to use gSetSeen(obj)

and me.hasSeen(obj) to set and test what the player character has seen, rather than

using the seen property. This is one reason why it’s good to get into the habit of using

these methods rather than manipulating the seen property directly. Another is that if

we’re half-way through a game and then decide we want to start tracking NPC
knowledge separately it will be so much easier if we haven’t used known and seen

directly in our code up to that point.

120

7.1.3 Revealing

There is one more mechanism for keeping track of what is known in a TADS 3 game,
which we may call revealing. This simply lets us declare an arbitrary string tag as
having been revealed, and later test whether or not it has been revealed. To declare
something as revealed we simply use the gReveal() macro, in the form

gReveal('tag'), where 'tag' can be any string we like. To test whether something

has been revealed we use the gRevealed() macro, in the form gRevealed('tag').

We can also reveal something when a string is displayed using <.reveal tag>. For

example:

 "<q>Have you heard about the lighthouse?</q> Bob asks anxiously.
 <.reveal lighthouse>";

 ...

 if(gRevealed('lighthouse'))
 "<q>Tell me about the lighthouse,</q> you ask. ";

 ...

 box: OpenableContainer 'box*boxes' 'box'
 dobjFor(Open)
 {
 check()
 {
 if(isStuck)
 failCheck('Something seems to be stopping it open.
 <.reveal box-stuck>');
 }
 action()
 {
 inherited;
 gReveal('box-opened');
 }
 }
 isStuck = true
 ;
As these examples suggest, this mechanism is probably most useful for conversation
(for which it was devised) and hints (the hints system, which we’ll look at in a later
chapter, could display a hint about getting the box open once 'box-stuck' had been
revealed and remove the hint again once 'box-opened' had been revealed). But of
course we’re entirely free to use this mechanism for any purpose we find helpful.

By default, the library simply records that fact that a particular tag has been revealed.
We can, if we like, associate more information about the revealing of tags by
overriding the setRevealed(tag) method on conversationManager, perhaps to store the
turn on which the revelation took place, or the location, or some more complex set of
data encapsulated in an object of our own devising.

121

7.2 Coding Excursus 11 – Comments, Literals and
Datatypes

This is a convenient point at which to tie up a few loose ends, covering a number of
things that have been presupposed up to now without being formally explained, and
introducing one or two new things it’s useful to know about when writing TADS 3
code.

7.2.1 Comments

We can insert a comment into TADS source code in one of two ways. A single line
comment is any text starting with // and running on to the end of the line. A block

comment is any text starting with /* and ending with */. Block comments may not be

nested. Comments are ignored by the compiler, and so can contain anything we like.
We can (and probably should) use comments both to explain our code to others (if
anyone else might read it) and, perhaps even more importantly, to explain it to
ourselves, or at least to remind ourselves what we were trying to do, why and how.

// This is a single-line comment.

local var = nil; // this is another single-line comment.

/* This is a block comment spanning a single line */

/* This is a block comment spanning several lines;
 it can go on for as long as we like, but we can't
 nest another block comment inside it, as the block
 comment will be assumed to come to an end as
 soon as the compiler encounters */

If we are using the editor built into Windows Workbench, it can automatically format
block comments neatly for us. It can also add and remove // comment markers to the

beginning of a selected set of lines, this can be useful for ‘commenting out’ blocks of
source code, i.e. temporarily disabling blocks of code for testing or debugging
purposes.

7.2.2 Identifiers

An identifier is the name of an object, class, function, property, method, or local
variable. An identifier must start with an alphabetic character or underscore, which
must be followed by zero or more alphabetic characters, underscores, or the digits 0-
9. TADS 3 identifiers are case-sensitive, so that Apple, apple, and aPPle would refer to
three different things. The normal convention is that class names and macro names
start with capital letters, except for macros that behave like pseudo-global variables,
which start with a lower case g.

For further information see the articles on ‘Naming Conventions’ and ‘Source Code
Structure’ in the TADS 3 System Manual.

122

7.2.3 Literals and Datatypes

TADS 3 recognizes the following datatypes, represented by the following kinds of
literal values:

● nil and true: where nil is a false or empty value.

● Integer: -2147483648 to + 2147483647

● Hexadecimal: 0xFFFF

● Enumerators: e.g. enum blue, red, green

● Property ID: &myProp

● Function Pointer: e.g. func

● List: [item1, item2, item3, item4, ... itemn]

● BigNumber: e,g, 12.34 or 1.25e9; can store up to 65,000 decimal digits in a
value between 1032767 and 10-32767.

● String: an ordered set of Unicode characters. A string constant is written by
enclosing a sequence of characters in single quotation marks, e.g. 'Hello
World! '

We’ve already met strings, integers, nil and true; we’ll say more about lists in the next
chapter, and something about Enumerators and Property IDs below. BigNumber is
one of those things that’s nice to have, but which we probably won’t use much in
Interactive Fiction; for more information see the article on BigNumber in section IV of
the TADS 3 System Manual. For more information on TADS 3 datatypes in general,
see the article on ‘Fundamental Datatypes’ in the System Manual.

7.2.4 Determining the Datatype (and Class) of Something

It’s often useful to be able to determine what type of data something is. We can do
this with the function dataType(val), where val is the data item we want to test. This

function returns one of the following values:

● TypeNil nil

● TypeTrue true

● TypeObject object reference

● TypeProp property ID

● TypeInt integer

● TypeSString single-quoted string

● TypeDString double-quoted string

● TypeList list

123

● TypeCode executable code

● TypeFuncPtr function pointer

● TypeNativeCode native code

● TypeEnum enumerator

If an identifier turns out to be an object, we can also determine its class using the
methods ofKind() and getSuperclassList(). The method obj.ofClass(cls)

returns true if obj inherits from cls anywhere in its inheritance hierarchy. The method
obj.getSuperclassList() returns a list of the classes with which obj was defined.

For example, suppose we had (in outline) the following definition:

box: Lockable, OpenableContainer
;

Then box.getSuperclassList() would return [Lockable, OpenableContainer],

while box.ofKind(Lockable), box.ofKind(OpenableContainer),

box.ofKind(Container) and box.ofKind(Thing) would all return true (because

OpenableContainer descends from Container which in turn descends from Thing).

On the other hand, box.ofKind(Food) or box.ofKind(Person) would both return

nil.

Incidentally, there is also a setSuperclassList() method which allows us to change

the superclass list of an object at run-time. For example, suppose handle starts out as

a component of briefcase, but it can be broken off to form a separate item. We

might then want handle to perform like an ordinary Thing, and we could use

handle.setSuperclassList([Thing]) to bring this about.

One other thing we may wish to do is to is to determine the datatype of a property
without evaluating that property. We can do that with the propType() method. We

call this on the object or class we’re interested in, passing a property pointer as the
single argument. The return value is one of the TypeXXXX values listed above. For

example, we could use box.propType(&name) to determine whether the name

property of box was simply a single-quoted string, or a piece of code (which might

return a single-quoted string).

For further details see the chapters on Reflection, Object and TadsObject in the
Library Reference Manual.

7.2.5 Property and Function Pointers

If we precede the name of a property or method with an ampersand we turn it into a
property pointer. If we give the name of a function without its argument list or any
brackets we obtain a function pointer. These pointers are useful when we want a
reference to the property or function itself rather than whatever the property, method,

124

or function evaluates to.

When we do want to evaluate (or execute) the property or method, we surround the
pointer name in parentheses and then follow it with the argument list.

For example, suppose we define an object with a number of different methods so:

myObj: object
 double(x) { return x * 2; }
 triple(x) { return x * 3; }
 quadruple(x) { return x * 4; }
 calculate(prop, x) { return self.(prop)(x); }
;

The statement local a = myObj.calculate(&triple, 2); will set a to 6. So will

the following pair of statements:

local meth = &triple;
local a = myObj.(meth)(2);

This is used, for example, in the definition of hasSeen(obj), which is defined as:

hasSeen(obj) { return obj.(seenProp); }

Note the difference between that and

hasSeen(obj) { return obj.seenProp; }
Which would erroneously return a pointer to the seen property (or whichever other

property had been defined), instead of the value of the seen property.

We thus use property pointers when we want to reference properties (or methods)
indirectly, typically when we need to write code that might use more than one
property of some object, but we don’t know which property it will be.

A function pointer is similar, but the syntax is a little different. To obtain a function
pointer, we don’t precede the function name with an ampersand, we just omit the
brackets and the argument list following it. Thus with the following definition:

halve(x)
{
 return x/2;
}

doSomething()
{
 local a = halve(4);
 local f = halve;
 local b = f(6);
}

When doSomething() executes, a will evaluate to 2, f will evaluate to a function

pointer referencing the halve() function, and b will evaluate to 3.

There’s one subtlety to note here; we can assign a function pointer to an object

125

property, but it may not work quite as we expect:

myObj:
 funcPtr = halve
 half(x) { return (funcPtr)(x); } // This won’t work!
;

This will compile, but will probably produce a run-time error if we call myObj.half().

To make it work as we want, we first need to store the function pointer in a local
variable:

myObj:
 funcPtr = halve
 half(x)
 {
 local f = funcPtr;
 return (f)(x); // but this is fine.
 }
;

7.2.6 Enumerators

It is sometimes useful to have constants with meaningful symbolic names. One way
we can do this is by defining a number of macros, e.g.:

#define red 1
#define blue 2
#define green 3

This is useful if we want our constants to have numerical values, and the numeric
values are meaningful, but if we just want to test whether some variable or property
is equal to some symbolic constant value, we can use enumerators instead. In this
case, we could just define:

enum red, blue, green;

We can assign these values to properties and variables, and test for equality or
inequality, e.g.:

local colour = blue;

if(colour == blue)
 "It's blue! ";

if(colour != red)
 "It's not red! ";

That’s just about all there is to enumerators, but there are few further points worth
noting:

● A enum statement is a top-level statement that can appear anywhere outside

an object, class or function definition.

● Enumerators are a distinct datatype; enumerators do not have a numerical

126

value, and they cannot be mixed with numbers in arithmetic operations or
comparisons.

● There is no relation between enumerators apart from the fact that they are all
enumerators, and so can legally be compared with one another for equality or
inequality. Declaring several enumerators in one statement does not establish
any particular relationship between them.

● Enumerator constants can be used in the case parts of a switch statement
provided the switch variable is of enumerator type.

For further information, see the article on ‘Enumerators’ in Part III of the System
Manual.

7.3 Topics

Earlier in the chapter we saw how we could track the player’s (and optionally other
characters’) knowledge of the things in the game. But physical objects aren’t the only
things people know about (or can think about, discuss, look up and so forth). People
can also know about (or think about, discuss, look up and so forth) abstract topics
such as the weather, Chinese politics, the meaning of life, astronomy, and sympathetic
magic. If any of these figure in our game, we need to represent them somehow, but
they’re not physical objects. For this purpose we use the Topic class.

There’s only one property we need to define on a Topic, namely its vocabWords (which

works in precisely the same way as the vocabWords property on Thing). So we might,

for example, define:

tWeather: Topic vocabWords = 'weather';
tChinesePolitics: Topic vocabWords = 'chinese politics';
tMeaningOfLife: Topic vocabWords = 'meaning/life';

Since we always need to define the vocabWords property on a Topic, as you might

imagine we can do so by means of a template:

tWeather: Topic 'weather';
tChinesePolitics: Topic 'chinese politics';
tMeaningOfLife: Topic 'meaning/life';

There is, by the way, no need to start the name of Topic objects with the letter t, but

it’s often useful to be able to distinguish Topics from physical objects in out code, so

it’s a good idea to adopt some such convention (you might prefer to use the slightly
more explicit top as the identifying prefix, for example).

The other commonly useful property Topic defines is isKnown, which has the same

meaning as the isKnown property on Thing. Whereas Thing.isKnown is nil by default,

Topic.isKnown starts out as true, so that if there are topics the player character

starts the game not knowing about, we need to change isKnown to nil on those topics.

127

We can use gSetKnown() and all the rest with Topics as well as Things, but we need

to remember that if we override knownProp on any actor(s), we need to make the

corresponding changes (to allow for the new knownProp) on both Thing and Topic.

There are two other kinds of thing besides abstract topics we can usefully implement
as Topics. The first is physical objects and people who are mentioned in the game but

don’t actually appear within it as objects in their own right; for example our game
may mention William Shakespeare or the planet Uranus or the lost Ark of the
Covenant without any of them making any physical appearance in the game; such
objects are probably best implemented as Topics. Topics can also be useful when we

want to talk about a group of objects that are implemented in the game; suppose, for
example, that our game implements a red ball, a blue ball, a green ball and an orange
ball, but at some point we want our player character to be able to discuss coloured
balls in general with some NPC; it may well prove convenient to define a
tColouredBalls Topic to do the job.

At this point it’s probably worth mentioning that neither the singleTopic grammar

token nor the gTopic pseudo-variable directly references a Topic object. They instead

refer to a ResolvedTopic object. Or to put it a bit more carefully, when we define an

action that uses the singleTopic token in its VerbRule (a TopicAction or

TopicTAction), the object matching the singleTopic token, obtainable through the

gTopic pseudo-variable, will be of class ResolvedTopic.

If we want to get at the actual simulation object or Topic that was (probably)

matched, we can use the getBestMatch() method, i.e. gTopic.getBestMatch(). This

is only probably the simulation object or Topic in question, since a ResolvedTopic

actually maintains three lists of possible matches (in its inScopeList, likelyList

and otherList properties) and getBestMatch() somewhat arbitrarily returns the first

item from the ‘best’ of these lists that have anything in them. This is generally good
enough for most purposes, however. For more details, look up ResolvedTopic in the

Library Reference Manual.

To get at the original text the player typed that the ResolvedTopic is matching, we

can use the getTopicText() method, i.e. gTopic.getTopicText(). We can use the

macro gTopicText to return this value, converted to lower case.

Finally, note that a TopicAction or TopicTAction will always succeed in returning a

ResolvedTopic even if what the player typed matches no Thing or Topic defined in

the game. In this case gTopic.getTopicText() will return that part of the player’s

command that matched the singleTopic token, but gTopic.getBestMatch() will be

nil.

128

7.4 Coding Excursus 12 – Dynamically Creating Objects

So far, all the objects we’ve encountered have been statically defined in our source
code. But it’s also possible to create objects on the fly at run-time. At its simplest this
is just a matter using the keyword new plus the class name.

For example, suppose we wanted to create an apple tree that goes on dispensing
apples for as long as the player attempts to pick them. We could do something like
this:

DefineTAction(Pick);

VerbRule(Pick)
 'pick' singleDobj
 : PickAction
 verbPhrase = 'pick/picking (what)'
;

modify Thing
 dobjFor(Pick)
 {
 preCond = [touchObj]
 verify() { illogical(cannotPickMsg); }
 }
 cannotPickMsg = '{That dobj/he} {is} not something {you/he} can pick. '
;

class Apple: Food 'apple*apples' 'apple'
 isEquivalent = true
;

orchard: OutdoorRoom 'orchard'
 "An apple tree grows in the middle of the orchard. "
;

+ tree: Fixture 'apple tree*trees' 'apple tree'
;

++ Component 'apple/apples' 'apple'
 dobjFor(Pick)
 {
 verify() { }
 action()
 {
 local apple = new Apple;
 apple.moveInto(gActor);
 "You pick an apple from the tree. ";
 }
 }
;

Here the Component represents the apples still on the tree. The command pick apple

will select this object in preference to any apples that have already been picked (since
picking a picked apple is illogical); the actionDobjPick() method will then create a

new Apple object and move it into the player's inventory. In principle the player could

go on picking apples forever; in practice the game will probably start grinding to a halt

129

after a few dozen apples have been picked (not because they’re dynamically created,
but because you end up with so many objects in scope at once).

When we use the new keyword to create an object the object’s construct() method is

called immediately after it has been created. This method can take as many
parameters as we like, which can be used to initialize the object. For example,
suppose we wanted to be able to create a number of different pieces of fruit
dynamically, we could define a Fruit class thus:

class Fruit: Food
 construct(fruitName, nutrValue)
 {
 name = fruitName;
 nutritionValue = nutrValue;
 vocabWords = name + '*fruit ' + name + 's';
 initializeVocabWith(vocabWords);
 }
 nutritionValue = 0

 dobjFor(Eat)
 {
 action()
 {
 "You eat <<theName>>; it tastes jolly good. ";
 gActor.strength += nutritionValue;
 moveInto(nil);
 }
 }
;

We could then create different pieces of fruit with code like:

 local x = new Fruit('banana', 2);
 local y = new Fruit('apple', 3);
 local z = new Fruit('orange', 4);

As an alternative, we could use the createInstance() method, called directly on the

Fruit class:

 local x = Fruit.createInstance('banana', 2);
 local y = Fruit.createInstance('apple', 3);
 local z = Fruit.createInstance('orange', 4);

For more information, see the chapters on ‘Dynamic Object Creation’ and ‘TadsObject’
in Parts III and IV of the System Manual.

7.5 Consultables

One place where we might look for knowledge, in works of IF as well as in real life, is
in books and book-like objects. These are the kinds of thing that can be used in
commands like consult cookery book about pancakes or look up tads in
encyclopaedia.

130

The mechanism TADS 3 provides for implementing such objects uses two classes of
object: Consultable to represent the book (or other reference work) we’re

consulting, and ConsultTopic to represent the topics we want the player to be able to

look up. We can also define a DefaultConsultTopic to provide a catch-all response

when the player tries to look up something we haven’t provided for. We then locate
the ConsultTopics (and the DefaultConsultTopic) inside the Consultable.

A ConsultTopic can be matched either on an object (a Thing or Topic), or on a

regular expression. If we want to it to match on an object, we define its matchObj

property to be the object in question; if we want it to match on a regular expression
we instead define its matchPattern property to be a single-quoted string containing

the regular expression we want to match. We can, if we like, define both these
properties, and then the ConsultTopic will match on either (if you’re not at all

familiar with regular expressions, don’t worry about them just yet; if you are, but
want to know how they’re implemented in TADS 3, look at the ‘Regular Expressions’
chapter in Part IV of the System Manual). The matchObj property can also contain a

list of objects; the ConsultTopic will then match on any one of those objects.

The information that’s to be displayed when the player looks up a particular topic is
defined in the ConsultTopic’s topicResponse property. If we want a topic to be only

conditionally available, we can set its isActive property to the relevant condition (we

could, for example, use this to prevent the player from looking up something he’s not
meant to know about yet).

This should become clearer with a couple of examples:

+ Readable, Consultable 'green book*books' 'green book'
 readDesc = "It's rather too long to read from cover to cover, but you
 could try looking up particular topics of interest. "
;

++ ConsultTopic
 matchObj = tWeather
 topicResponse = "The weather in these parts is frequently variable. "
;

++ ConsultTopic
 matchObj =[redBall, greenBall]
 topicResponse = "According to the book, both the green ball and the
 red ball are pretty much round. "

++ ConsultTopic
 matchPattern = '<alpha>{1,3}<digit>{1,3}'
 topicResponse = "According to the green book this could the serial
 number of a type 4 widget-spangler. "
;

++ DefaultConsultTopic
 topicResponse = "The book doesn't seem to have anything to say on that
 topic. "
;

131

If the player issues the command look up weather in green book or consult green
book about the weather then (assuming the tWeather Topic has been suitably

defined), the game will respond with “The weather in these parts is frequently
variable.” If the player looks up the green ball or the red ball in the book, s/he’ll get
the message about the balls being round. If the player tries looking up abc123 or
some other combination of one to three letters followed by one to three digits s/he’ll
get the response about the widget-spangler. Trying to consult the green book about
anything else will be met with the default response saying that the book doesn’t have
anything to say on the topic. In a real Consultable we’d probably provide more

responses on a more coherent range of topics.

The definition of a large number of ConsultTopics can be made easier (as ever) using a
template. We can define the matchObj using @ followed by a single object, or a list of

objects in square brackets, or else the matchPattern in single quotes. We can then

give the topicResponse simply as a double-quoted string. Using the template, the

ConsultTopics defined above can become just:

++ ConsultTopic @tWeather
 "The weather in these parts is frequently variable. "
;

++ ConsultTopic [redBall, greenBall]
 "According to the book, both the green ball and the
 red ball are pretty much round. "

++ ConsultTopic '<alpha>{1,3}<digit>{1,3}'
 "According to the green book this could the serial
 number of a type 4 widget-spangler. "
;

++ DefaultConsultTopic
 "The book doesn't seem to have anything to say on that
 topic. "
;

Exercise 14: Create your own Consultable object (a book or timetable or anything

else you like) with a number of entries. Don’t worry about using regular expressions
to match ConsultTopics unless you’re reasonably comfortable with them. If you need

a bit more help look up Consultable and ConsultTopic in the Library Reference

Manual; you may also find it helpful to look up TopicEntry there as well, along with

the TopicEntry template.

132

8 Events

8.1 Fuses and Daemons

It’s often useful to be able to schedule an event to happen at some point in the future,
or to carry out a routine every turn (or every so many turns). For this purpose we can
use Fuses and Daemons.

In TADS 3, Fuses and Daemons are created as dynamic objects. We set up a Fuse with
a command like:

new Fuse(obj, &prop, n);
or

fuseID = new Fuse(obj, &prop, n);

Where fuseID (or whatever name we want to use) is typically a property we’re using

to store a reference to the Fuse, if we need one. With these definitions the prop
property of the obj object will be executed after n turns. If n is 1, obj.prop will be

executed on the next turn. If n is 0, the fuse will fire on the same turn; this can be
useful if we want to set something up to happen at the end of the current turn. For
example, we might define:

dynamite: Thing 'dynamite/stick' 'stick of dynamite'
 dobjFor(Burn)
 {
 verify() {}
 action()
 {
 new Fuse(self, &explode, 3);
 "You set the dynamite alight. ";
 }
 }
 explode()
 {
 "Bang! ";
 moveInto(nil);
 }
;

With this definition the dynamite will explode three turns after it is set alight. If the
player should find some way to extinguish it in the meanwhile, we need to find some
way to disable the fuse. If we’d stored a reference to the Fuse we could do that most
simply with

fuseID.removeEvent();

If we hadn’t stored a reference to it, we could still disable the Fuse with:

eventManager.removeMatchingEvents(dynamite, &explode);

133

In a full implementation of the dynamite, we’d probably do something more dramatic
when it exploded than just saying “Bang!” and removing the dynamite from play, but
in any case we shouldn’t report what happens unless the player character is there to
see it. If the player lights the dynamite and then immediately heads off to a remote
location, the report of the explosion should presumably not appear. To handle this kind
of situation we can use a SenseFuse:

new SenseFuse(obj, &prop, n, source, sense);

The two extra parameters are source and sense. With a SenseFuse obj.prop will still

be executed after n turns, but anything that obj.prop tries to display to the screen
won’t actually appear unless the player character can sense source via sense (which
must be one of sight, sound, smell or touch). We could revise our dynamite
accordingly:

dynamite: Thing 'dynamite/stick' 'dynamite'
 dobjFor(Burn)
 {
 verify() {}
 action()
 {
 "You set the dynamite alight. ";
 new SenseFuse(self, &explode, 3, self, sound);
 }
 }
 explode()
 {
 "Bang! ";
 moveInto(nil);
 }
;

With this definition, if the dynamite is out of earshot when the fuse goes off, the
dynamite is still moved out of play, but the “Bang!” message will not be displayed.

It should be added that although the dynamite example implements a fuse in a rather
literal sense, Fuses and SenseFuses can be used to trigger any kinds of event we like.

If we want a repeating event rather than a one-off event, we use a Daemon rather
than a Fuse. This is created in much the same way:

new Daemon(obj, &prop, n);
or

daemonID = new Daemon(obj, &prop, n);

This causes obj.prop to be executed every n turns. If n is 1, obj.prop is first

executed on the current turn; if it is 2, it is next executed on the following turn (and
so on).

For example:

134

cave: Room 'small cave'
 startDrip()
 {
 dripCount = 0;
 dripDaemon = new Daemon(self, &drip, 1);
 }
 stopDrip()
 {
 if(dripDaemon != nil)
 {
 dripDaemon.removeEvent();
 dripDaemon = nil;
 }
 }

 dripDaemon = nil
 dripCount = 0
 drip()
 {
 switch(++dripCount)
 {
 case 1: "A faint dripping starts. "; break;
 case 2: "The dripping gets louder. "; break;
 case 3: "The dripping becomes louder still. "; break;
 default: "There's a continuous loud dripping. "; break;
 }
 }
;

This code should be clear enough; note how the stopDrip() method checks that

dripDaemon is not nil before attempting to call the removeEvent() method on it; this

is a defensive programming strategy to ensure that it’s always safe to call stopDrip()

without causing a run-time error. The alternative would be to call:

eventManager.removeMatchingEvents(cave, &drip).

Corresponding to the SenseFuse is the SenseDaemon, defined in a similar way:

new SenseDaemon(obj, &prop, n, source, sense);

Here all the parameters have the meanings we’ve already seen. For example, in order
to ensure that we only report the dripping sound when the player is in the cave to
hear it, we might have set up the dripping daemon with:

dripDaemon = new SenseDaemon(self, &drip, 1, self, sound);

In addition to the Daemon and the SenseDaemon, there’s a PromptDaemon, which is
run every turn just before the prompt is displayed. This is set up simply with

new PromptDaemon(obj, &prop);

This will cause obj.prop to be executed every turn, just before the command prompt.

The OneTimePromptDaemon is a PromptDaemon (set up in the same way) that

135

executes just once and then disables itself. This can be useful when we want
something to happen right at the end of the current turn; it can also be useful to set
things up just before the first turn.

We can control the order in which Daemons and Fuses are executed by overriding
their eventOrder property; the lower the number, the earlier the Event will execute.

The default value is 100.

For more information, look up BasicEvent and its subclasses in the Library Reference
Manual.

8.2 Coding Excursus 13 – Anonymous Functions

It is possible to create not only objects but functions dynamically; these are then
anonymous functions. At its most general, the syntax is:

new function(args) { function body };

This returns a pointer to the function thus created, which we could use to call the
function; for example:

local f = new function(x, y) { return x + y; };
local sum = f(1, 2);

When executed, this would result in sum being evaluated to 3. Note that as of TADS

version 3.1.0 the keyword new is optional when creating an anonymous function. The
following is equally legal:

local f = function(x, y) { return x + y; };
local sum = f(1, 2);

An anonymous function is not restricted to containing a single statement; an
anonymous function can be as long and complex as we like. But where an anonymous
function does consist of a single statement, generally an expression to be evaluated
and returned by the function, we can use a short form of the syntax. The following is
equivalent to the anonymous function we just defined above:

local f = { x, y: x + y };

Note that with this short-form syntax, the list of arguments (if any) is followed by a
colon, which in turn is followed by the expression that the anonymous function is to
return. We do not use the keyword return in this short-form syntax, and we do not

follow the expression (inside the short-form anonymous function) with a semi-colon.
Attempting to use a semi-colon inside a short-form anonymous function will result in a
compilation error.

It’s perfectly legal to define an anonymous function that takes no arguments at all, for
example:

136

local hello = {: "Hello World! " };

Subsequently executing hello() will then cause "Hello World!" to be displayed. As we

shall see shortly, this kind of anonymous function definition can be particularly useful
in EventLists.

Anonymous functions can refer to local variables and to the self object that is in scope
at the time they are created. For example, the following is perfectly legal:

someObj: object
 name = 'banana'
 doName()
 {
 local str = 'split';
 local f = { x: name + x + str };
 return f(' ');
 }
;

The doName() method would return 'banana split'.

At this point, you may well be thinking “This looks all very nice, but what useful
purpose does it serve?” We’ll be seeing some uses for anonymous functions later on in
this chapter, but one common use is as the argument to some function or method. An
anonymous function definition is an expression, returning a function pointer. It can
thus be passed to a method or function that expects a function pointer as an
argument. For example, we could define:

function countItems(lst, func)
{
 local cnt = 0;
 for(local i; i <= lst.length(); i++)
 {
 if(func(lst[i]))
 cnt++;
 }
 return cnt;
}

This function takes two arguments, a list (we’ll say more about lists in the next Coding
Excursus, a little further on in this chapter) and a function pointer. It returns the
number of items in the list for which the function returns true (when called with a list
item as its parameter). So, for example, we could call it with something like:

evens = countItems([1, 2, 3, 4, 5], {x: x % 2 == 0 });

And this would return the number of even numbers in the list [1, 2, 3, 4, 5]. We could
subsequently call it with:

clothingCount = countItems(me.allContents, {x: x.ofKind(Wearable) };

137

And this would return the total number of Wearable items carried, worn, or indirectly
carried by the player character.

As we shall see, we don’t actually need to define this particular function, since there’s
already an equivalent method defined on the List class, but that, too, uses anonymous
functions in much this way.

As of TADS version 3.1.0 it’s also possible to create anonymous methods (and floating
methods); we’ll return to that briefly in section Error: Reference source not found
below.

For a fuller account of anonymous functions (and methods), see the chapter on
‘Anonymous Functions’ in Part III of the System Manual.

8.3 EventLists

We’ve seen how a Daemon can be used to make something happen each turn, but it’s
often useful to be able to define a list of events, one of which is to occur on each turn.
We can do this with the EventList class. This defines an eventList property, which

should contain a list of items (in the form [item1, item2, ... itemn]).

The items in an EventList can be any of the following:

● A single-quoted string (in which case the string is displayed)

● A function pointer (in which case the function is invoked without arguments)

● A property pointer (in which case the property/method of the self object (i.e.
the EventList object) is invoked without arguments)

● An object (which should be another Script or EventList), in which case its
doScript() method is invoked.

● nil (in which case nothing happens).

Each item is dealt with in turn when the EventList’s doScript() method is executed.

We could thus use a Daemon to drive an EventList simply by repeatedly calling its

doScript() method. For example, the dripping cave example could have been

written:

cave: Room 'small cave'
 startDrip()
 {
 dripDaemon = new Daemon(self, &drip, 1);
 }

 stopDrip()
 {
 if(dripDaemon != nil)
 {
 dripDaemon.removeEvent();
 dripDaemon = nil;
 }
 }

138

 dripDaemon = nil

 drip() { dripEvents.doScript(); }

 dripEvents: EventList
 {
 eventList =
 [
 'A faint dripping starts. ',
 'The dripping gets louder. ',
 'The dripping becomes louder still. ',
 'There\'s a continuous loud dripping. '
]
 }
;

Actually, this is not quite the same, since an EventList stops doing anything at all

when it runs off the end, whereas we want the “continuous loud dripping” message to
keep repeating; for this we need a StopEventList rather than a plain EventList.

Also, since we so often need to define the eventList property of an EventList, this

can be done via a template. We could therefore define the dripEvents property as:

 dripEvents: StopEventList
 {
 [
 'A faint dripping starts. ',
 'The dripping gets louder. ',
 'The dripping becomes louder still. ',
 'There\'s a continuous loud dripping. '
]
 }

The various kinds of EventList we can use are:

● EventList – this runs through its eventList once, in order, and then stops doing

anything once it passes the final item.

● StopEventList – this runs through its eventList once, in order, and then keeps

repeating the final item.

● CyclicEventList – this runs through its eventList, in order, and returns to the

first item once the final item is past.

● RandomEventList – this chooses an item at random each time it’s evoked.

● ShuffledEventList – this (usually) sorts the items in random order before

running through it for the first time. It then runs through the items until it
reaches the last one. After it’s used the last one it sorts the items in random
order again and starts over from the beginning. The effect is a little like
repeatedly shuffling a pack/deck of cards and dealing one at a time.

● SyncEventList – an event list that takes its actions from a separate event list

object. We get our current state from the other list, and advancing our state

139

advances the other list's state in lock step. Set masterObject to refer to the

master list whose state we synchronize with.

● ExternalEventList – a list whose state is driven externally to the script.

Specifically, the state is not advanced by invoking the script; the state is
advanced exclusively by some external process (for example, by a daemon that
invokes the event list's advanceState() method).

We may often use RandomEventList and ShuffledEventList to provide atmospheric

background messages (e.g. descriptions of various small animals and birds rustling
around in a forest location). To prevent such messages out-repeating their welcome
we can control their frequency with the properties eventPercent, eventReduceTo and

eventReduceAfter. If we set eventPercent to 75, 50, or 25, say, then a

RandomEventList or ShuffledEventList will only trigger one of its items on average

on three-quarters, or half, or one-quarter of the turns. If we want this frequency to
fall after a while, we can specify a second frequency in eventReduceTo which will

come into effect after we’ve fired events eventReduceAfter times. If we don’t want

the frequency to change, we should leave eventReduceAfter at nil. If we want this

functionality on any other kind of EventList we can use the RandomFiringScript mix

in class (e.g. we could define something as RandomFiringScript, StopEventList).

A ShuffledEventList has a couple of other properties we can use to tweak the way it

behaves. If we don’t want the events to be shuffled first time through (because we
want them to be fired in the order we defined them first time round), we can set
shuffleFirst to nil. If, on the other hand, we want a separate set of events to be

triggered before we start on the shuffled list, we can define a separate firstEvents

property. To allow us to define this easily, there’s a ShuffledEventList template; if

we define a ShuffledEventList with two lists (without explicitly assigning them to

properties) , then the first list will be assigned to the firstEvents property, and the

second to the eventList property, e.g.:

someList: ShuffledEventList
 ['First message', 'Second message' 'Third message']
 ['A random message', 'Another shuffled message',
 'Yet another shuffled message']
;

So far, all our examples have been of event lists containing single-quoted strings, but
as we said at the outset, this is only one kind of item that can go there. We can’t put
a double-quoted string in an event list, even though we might want to (perhaps to
take advantage of the << >> embedded expression syntax), but we can put a function

pointer in an event list, and such a function pointer could come from a short-form
anonymous function containing a double-quoted string:

myList: EventList
 [
 'A single-quoted string. ',

140

 {: "A double-quoted string with an <<embeddedExpression()>>. " }
]
 embeddedExpression() { "embedded expression"; }
;

An alternative would be to use a property pointer:

myList: EventList
 [
 'A single-quoted string. ',
 &sayDouble
]
 sayDouble() { "A double-quoted string with an <<embeddedExpression()>>. "; }
 embeddedExpression() { "embedded expression"; }
;

This is more verbose in this case, but usefully illustrates how to use a property pointer
in an EventList. In any case, we can use one syntax or the other to do something
rather more complicated that display a double-quoted string, for example:

floorList: EventList
 [
 'The floor starts to creak alarmingly. ',
 'The creaking from the floor starts to sound more like cracking. ',
 new function()
 {
 "With a loud <i>crack</i> the floor suddenly gives way, and you
 suddenly find yourself falling...";
 gPlayerChar.moveIntoForTravel(cellar);
 gPlayerChar.lookAround(true);
 }
]
;

In this case, it’s a matter of individual preference whether we prefer to include an
anonymous function within the list itself, or implement it as a separate method called
via a property pointer:

floorList: EventList
 [
 'The floor starts to creak alarmingly. ',
 'The creaking from the floor starts to sound more like cracking. ',
 &floorBreak
]

 floorBreak()
 {
 "With a loud <i>crack</i> the floor suddenly gives way, and you
 suddenly find yourself falling...";
 gPlayerChar.moveIntoForTravel(cellar);
 gPlayerChar.lookAround(true);
 }

;

Embedded expressions can be used in single-quoted strings. Why, then, should we

141

ever want to use an anonymous function to encapsulate a double-quoted string in an
Event List just so we can use an embedded expression. Surely we could just write
something like:

myList: EventList
 [
 'A single-quoted string. ',
 'A double-quoted string with an <<embeddedExpression()>>. '
]
 embeddedExpression() { 'embedded expression'; }
;

Often, this will indeed work perfectly well. For example, there would be nothing at all
wrong with an EventList constructed like this:

myList: ShuffledEventList
 [
 'The wind whistles in the trees. ',
 'A <<if frontDoor.isOpen>>loud<<else>>muffled<<end>>sound wafts
 through the <<frontDoor.oppenDesc>> door. ',
 'From where you\'re <<me.posture.participle>> you notice the wind
 change direction. ',

'The sun glints off the <<if window.isBroken>>broken<<else>>front<<end>>
 window. '

]
 embeddedExpression() { "embedded expression"; }
;

And this type of thing probably covers the most common cases where you might want
to use embedded expressions in an EventList. Note, however, that the following would
not work at all how you might expect:

myList: ShuffledEventList
 [
 'The wind whistles in the trees; you have now noticed this <<++count>>
 times. ',
 'A <<one of>>starling<<or>>crow<<or>>pigeon<<or>>blackbird<<shuffled>>
 suddenly takes flight. ',
 'You notice the wind change direction to the <<one of>>north<<or>>
 south<<or>>east<<or>>west<<cycling>>. ',

'The sun <<one of>>suddenly<<or>>once again<<stopping>> glints off
the front window. '

]

 count = 0
;

If you wrote something like that, you'd find the count variable increasing far more

rapidly that expected, the cycling of directions not working properly, the stopping list
reaching 'once again' prematurely, and the shuffled list of birds apparent not being
shuffled properly. The (albeit somewhat obscure) reason for this is that the elements
of an EventList are evaluated far more frequently than you might expect (typically six
times per turn), even though you only see one of them displayed. In this kind of case,
you do need to enclose the embedded expressions in double-quoted strings using

142

anonymous functions. The following would work fine:

myList: ShuffledEventList
 [
 {: "The wind whistles in the trees; you have now noticed this <<++count>>
 times. "},
 {: "A <<one of>>starling<<or>>crow<<or>>pigeon<<or>>blackbird<<shuffled>>
 suddenly takes flight. "},
 {: "You notice the wind change direction to the <<one of>>north<<or>>
 south<<or>>east<<or>>west<<cycling>>. "},

{: "The sun <<one of>>suddenly<<or>>once again<<stopping>> glints off
the front window. "}

]

 count = 0
;

The rule of thumb is that it's safe to use an embedded expression in a single-quoted
string in this kind of context when the embedded expression won't change its value in
the course of a single turn (even if it is evaluated several times during the course of
that turn) but not otherwise. A <<one of>>... type construct will nearly always

change its value with successive evaluations, and so should not be put inside a single-
quoted string used as a list element. The same applies to other expressions that
explicitly change their value each time they're evaluated (such as ++count) or have

other side-effects that might make successive changes to the game state over the
course of a single turn.

We can always drive an EventList by calling its doScript() method from a Daemon, but
there are some places where the library provides hooks for EventLists that will be
driven for us if we define them in the appropriate place.

For example, Room defines an atmosphereList property. If this is defined at all, it

should be defined as an EventList of some kind, which will then automatically have its
doScript() method called every turn the player character is in the room in question,

for example:

class ForestRoom: OutdoorRoom
 atmosphereList: ShuffledEventList
 {
 [
 'A squirrel darts up a tree and vanishes out of sight. ',
 'A fox runs across your path. ',
 'You hear a small animal rustling in the undergrowth. ',
 'Some distance off to the right, a pair a birds take flight. '
]

 eventPercent = 80
 eventReduceTo = 40
 eventReduceAfter = 4
 }
;

143

Here we use a ShuffledEventList (probably the most suitable class for an

atmosphere list), and reduce its frequency so that the player doesn’t tire of our
atmospheric messages too quickly.

Another place where an EventList is automatically useful is in conjunction with a

TravelMessage. If the TravelMessage is also an EventList, then traversing this kind

of TravelConnector (or any other TravelConnector that has TravelWithMessage in

its class list) will automatically call its doScript() method (provided we haven’t

otherwise overridden its travelDesc() method). For example:

clearing: OutdoorRoom 'Forest Clearing'
 "It looks like you could go east or west from here. "
 west = streamBank
 east: TravelMessage, StopEventList
 {
 destination = roadSide
 eventList =
 [
 'You walk eastwards for several hundred yards down a track that
 seems to get narrower and narrower, until you're forced to
 squeeze through the tightest of gaps between trees. After that
 the track gradually widens out again, until you at last find
 yourself emerging by the side of a road. ',

 'You once again walk eastwards down the narrow track, squeeze
 through the gap, and emerge by the side of the road. '
]
 }
;

Here it might be tedious for the player to see the somewhat lengthy description of the
walk down the track on each occasion, so we provide an abbreviated version for
second and subsequent attempts.

We’ll be meeting more of these built-in hooks for event lists in later on; in the
meantime, for more information on the EventList classes look up the Script class and
its subclasses in the TADS 3 Library Reference Manual. You might want to look up
ShuffledList at the same time; although this is not a kind of EventList, there may be

occasions when you’d find in useful (specifically when you want a sequence of values
returned in a shuffled order, rather than a sequence of events executed in a shuffled
order).

8.4 Coding Excursus 14 – Lists and Vectors

We’ve already mentioned Lists several times; the time has come to look at them a bit
more closely. Since Vectors are quite similar to Lists, we may as well consider them
together.

As we have already seen, a List is simply a series of values combined together as a

144

single value. To define a constant list, we enclose the items in the list in square
brackets and separate each element in the list from the next with a comma, e.g.:

local numlst = [1, 2, 3, 5, 7, 10];
local objlst = [redBall, greenBall, brownCow, blackShirt];

The above example assigns lists to local variables; they can equally well be assigned
to object properties, or passed as arguments to functions or methods, or indeed
returned as the value of a function or method, e.g.:

sumProduct(lst)
{
 local sum = 0;
 local prod = 1;
 for(local i = 1; i <= lst.length() ; i++)
 {
 sum += lst[i];
 prod *= lst[i];
 }
 return [sum, prod];
}

This function takes a list of numbers as its argument, and returns a list containing the
sum and the product of these numbers. This demonstrates, among other things, how
we can return more than one value from a function (or method) by using a list.

The example also shows how we can get at the individual items in a list. To get at
item i in list lst we simply give the list name followed by the index in square

brackets: lst[i]. It’s also legal to change a list value this way, e.g. lst[4] = 15. A

list is indexed starting at 1, so that, for example, in the numlst[1] would be 1 and

objlist[1] would be redBall (assuming these two lists are defined as shown

above). The number of items in a list is given by its length() method, so that, for

example numlst.length() would be 6 and objlst.length() would be 4. It’s illegal to

try to refer to a list element beyond the end of the list (e.g. an attempt to refer to
objlst[5] would result in a run-time error, unless we’d made the list longer

somehow).

All the lists we’ve seen so far have contained elements of the same type, but it’s
perfectly legal to mix datatypes in a list; the following, for example, is a perfectly valid
list:

[1, 'red', greenBall, 5, &name]

It’s also perfectly legal for a list to contain other lists as elements, for example:

local lst = [1, 3, ['red', redBall], [4, 5], 'herring'];

In this case lst[3] would yield the value ['red', redBall] whereas lst[3][2]

145

would yield the value redBall.

We can add elements to a list using the + operator. For example if lst is the list [1,

3, 5] then lst + 7 would be the list [1, 3, 5, 7]. If we wanted to change lst to

the list [1, 3, 5, 7] we could use the statement lst += 7.

We can also use the – operator to remove an item from a list. If lst were [1, 3, 5,

7] then lst – 3 would be [1, 5, 7]; if we want to apply the change to lst (rather

than assigning the changed list to another variable), we could do so with lst -= 3.

This raises an important point to remember: using methods or operators on lists
yields a new value which we can assign to something else, but does not in itself
change the list operated on unless we explicitly make it do so.

In other words, it’s fatally easy to write an expression like lst + 2; when what we

really needed was the assignment statement lst += 2;. The former is perfectly legal

as a statement and will compile quite happily; it just won’t do what we probably want.

For full details of how the + and – operators work with Lists and Vectors, see the
chapter on ‘Expressions and Operators’ in Part III of the TADS 3 System Manual.

There are also quite a few methods of the List (and Vector) class that’s it’s useful to
know about. We’ve already met one, length(); we’ll now introduce a few more.

The append() method is quite similar to the + operator. That is lst.append(x) does

much what lst + x does, namely adds x as a new element to the end of lst. Note,

however, that this is an expression. Simply writing the statement lst.append(x) will

not change the value of lst; instead it will return a new list that’s lst plus x. If we

want to change the value of lst using append() we need to write lst =

lst.append(x). There’s also a subtle difference between + and append(). The

difference is that append() always treats its argument as a single value, even if it’s a

list. The effect is that if lst is, say, [1, 3, 5] then:

lst + [7, 9] is [1, 3, 5, 7, 9]
lst.append([7,9]) is [1, 3, 5, [7, 9]]

Similar to append() is appendUnique(), except that each value in the combined list

will appear only once, so for example:

[1, 2, 2, 4, 7].appendUnique([1, 3, 5, 7]) is [1, 2, 3, 4, 5, 7]

Related to appendUnique() is getUnique(), which simply returns a List containing

each element only once.

[1, 2, 2, 4, 7].getUnique() is [1, 2, 4, 7]

The countOf(val) method returns the number of elements of the list equal to val, so

for example [1, 2, 2, 4, 7].countOf(2) would return 2.

146

Similarly indexOf(val) returns the index of the first item in the list that’s equal to

val; so if lst is [1, 2, 2, 4, 7] then lst.indexOf(2) would be 2 while

lst.indexOf(7) would be 5 and lst.indexOf(3) would be nil (showing that we can

use indexOf() to test whether a list contains a particular value).

The two methods countOf() and indexOf() have a pair of powerful cousins called

countWhich() and indexWhich(). The argument to these methods is an anonymous

function, itself with one argument, which should return true for the condition we’re
interested in. For example, suppose that we’ve defined a Treasure class, and we want
to know how many items of Treasure the player character is carrying (directly or
indirectly). Using countWhich() we can do it like this:

 local treasureNum = me.allContents.countWhich({x: x.ofKind(Treasure) });

Likewise if we want to identify which (if any) of the items the player is carrying is a
Treasure, we can do so with this code:

 local idx = me.contents.indexWhich({x: x.ofKind(Treasure) });
 local treasureItem = me.contents[idx];

In fact, we can do this even more compactly using the valWhich() method, which

gives us the matching value directly, rather than its index position within the list.

 local treasureItem = me.contents.valWhich({x: x.ofKind(Treasure) });

This kind of thing may look a little scary at first sight, but it’s well worth getting used
to, since it enables us to manipulate lists (and vectors) so economically. The
alternative would be to write a loop:

 local treasureItem = nil;
 foreach(local cur in me.contents)
 {
 if(cur.ofKind(Treasure))
 {
 treasureItem = cur;
 break;
 }
 }

While this isn’t too terrible, it’s clearly quite cumbersome compared with using
valWhich(), which enables us to achieve the same result in a single line of code. But

it does, incidentally, introduce a new kind of loop, the foreach loop, which, as you

may have gathered from the context, allows us to iterate over the elements of a List
(or Vector). The general syntax should be reasonably apparent from the example:

 foreach(iterator-variable in list-name)
 loop-body

The idea is that iterator-variable takes the value of each element of list-name in turn,

147

until we reach the end of the list (or encounter a break statement). Note that as of

TADS version 3.1.0 we can also use for in place of foreach in this kind of statement.

Among the other List methods available, we should mention sublist() and subset(),

both of which provide means of extracting some group of elements from a list. The
method sublist(start, len) returns a new list starting with the start element of the

list we’re operating with and continuing for at most len elements. The len argument is
optional; if it’s absent, we simply continue to the end of the list, so for example, if we
have:

local a = [1, 2, 3, 4, 5];
local b = a.sublist(3);
local c = a.sublist(3, 2);

Then b will be [3, 4, 5] whereas c will be [3, 4].

The subset() function takes an anonymous function as an argument, and returns a

list of all the elements for which the anonymous function evaluates to true. For
example, if we want a list containing all the Treasure items directly or indirectly in

the player character’s inventory we could generate it with:

me.allContents.subset({x: x.ofKind(Treasure)})

Alternatively, if we wanted a list of everything directly carried by the player with a
bulk greater than 4, we could generate it with:

me.contents.subset({x: x.bulk > 4})

There are also methods to sort Lists, remove elements from Lists, and do various
other interesting and useful things with Lists. For a full account, read the chapter on
‘List’ in Part IV of the TADS 3 System Manual.

One further function to be aware of is nilToList(); if the argument to this function is

a list, the function returns the list unchanged, but if the argument is nil the function
returns the empty list []. This can be useful when we want to perform a list operation

on a property that may contain either a list or nil. For example, suppose we want to
add a precondition for an action on a particular object, we might write:

 preCond = inherited + objHeld

Should the object inherit from a class where the precondition for that action is
undefined (and hence nil), this will cause a run-time error. We can avoid this danger
by instead writing:

 preCond = nilToList(inherited) + objHeld

Apart from the nilToList() function, virtually everything we’ve said about Lists also

applies to Vectors, so now we should say something about the difference between the

148

two. The key difference is that a List is immutable while a Vector is not. That means
that if we perform some operation on a List, we don’t change the List, we create a
new List with the revised set of values. A Vector, however, can be dynamically
changed. This makes updating a Vector more efficient than updating a List, but also
has implications for the effect of the change. As the System Manual explains it, if we
defined the following:

 local a = [1, 2, 3];
 local b = a;
 a[2] = 100;
 say(b[2]);

When we display the second element of b we’ll see the value 2 displayed. This is
because when we change the second element of a we create a new List which is then
assigned to a, but this does not affect the List that’s assigned to b.

If, however, we attempted the equivalent operation with a Vector, we’d get a different
result:

 local a = new Vector(10, [1, 2, 3]);
 local b = a;
 a[2] = 100;
 say(b[2]);

Displaying the second element of b would now show it to be 100. Since Vectors can be
changed, no new object is created when we change the second element of the Vector,
and so a and b continue to contain the same Vector object.

This example shows that creating a Vector is a bit different from creating a list.
There’s no such thing as a Vector constant equivalent to a List constant like [1 ,2,

3]. Vectors have to be created dynamically with the new keyword. The constructor can

take one or two arguments. The first argument must be an integer specifying the
initial allocation size of the Vector. So for example, we could create a Vector with a
statement like:

 myProp = new Vector(20);

This would create a Vector with an initial memory allocation for 20 elements. This
does not mean that the Vector is created with 20 elements; it is created empty. It also
does not mean that the Vector is limited to 20 elements; we can carry on adding as
many elements as we like. It simply means that we expect the Vector to grow to
about 20 elements, and things will be a bit more efficient if our guess is more or less
right.

We can also add a second argument, which can be either an integer or a List. With
this statement:

myProp = new Vector(20, 10);

149

We’d create a new Vector and initialize it with 10 nil elements. With this one:

myProp = new Vector(20, [1, 3, 5]);

We’d create a new Vector and initialize its first three elements to 1, 3 and 5. This form
of the Vector constructor effectively enables us to convert a List into a Vector (or,
strictly speaking, to obtain a Vector containing the same elements as any given List).
We can carry out the opposite operation with the toList() method, which returns a

List containing the same elements a the Vector its called on. It can optionally return a
subset of the elements from the Vector by specifying one or two optional arguments;
vec.toList(start, count) will return a List containing count elements starting with

the start element of vec.

Vector also defines many of the same methods we have seen for List, which do similar
things, but with one important difference: many methods that return a new List but
leave the original List unchanged will change a Vector when executed on a Vector.

If we want an object property to hold a Vector, there’s a couple of ways we can
typically go about it. One coding pattern is to start with a nil value and to create the
Vector dynamically the first time we try to add an element to it:

myObj: object
 vecProp = nil
 addVecElement(val)
 {
 if(vecProp == nil)
 vecProp = new Vector(25);

 vecProp.append(val);
 }
;

The alternative is to assign a Vector to the property’s initial value using the static

keyword:

myObj: object
 vecProp = static new Vector(25)
;

We’ll say more about the static keyword below.

The main question this all leaves is why one should use a Vector in preference to a
List. The answer is that it’s more efficient to change a Vector than a List (the latter
requiring the overhead of creating a new object each time it’s updated). It can
therefore lead to better performance if we use a Vector for properties that are likely to
be changed frequently, or when building a set of values dynamically. In the latter case
we can always convert the Vector to a List once we’ve built it.

This section has introduced only the most salient features of Lists and Vectors. For the
full story see the ‘List’ and ‘Vector’ chapters in Part IV of the TADS 3 System Manual.

150

8.5 Initialization and Pre-initialization

8.5.1 Initialization

We’ve seen how we can use Daemons and Fuses to trigger certain kinds of events,
and EventLists to control sequences of Events; one other place where we might want
to make things happen is when our game starts.

One way we can do that is with an InitObject. An InitObject is simply an object

whose execute() method will be executed when the game starts up. InitObject can

be mixed in with other classes so that an object’s initialization code can be written on
the object. This can be particularly useful for starting a Fuse or Daemon at the start of
play, for example:

bomb: InitObject, Thing 'long black cylinder/bomb*bombs' 'bomb'
 "It looks like a long black cylinder. "
 execute() { fuseID = new Fuse(self, &explode, 20); }
 fuseID = nil
 explode()
 {
 "The bomb explodes with a mighty roar! ";
 if(gPlayerChar.isIn(getOutermostRoom))
 gPlayerChar.die();

 moveInto(nil);
 }
;

If we want, we can control the order of execution through the execBeforeMe and

execAfterMe properties. These properties can hold lists of InitObjects that should be

executed before or after the InitObject we’re defining. For example, if we went on to
define a second InitObject we wanted to execute after the bomb sets up its Fuse, we’d
define execBeforeMe = [bomb] on it.

8.5.2 Pre-Initialization

Initialization takes place at game start-up. Pre-Initialization takes place towards the
end of the compilation process; we can therefore use it to set up data structures and
carry out calculations that need to be in place at the start of play, without causing any
delay at the start of play, since the result of these calculations will be part of the
compiled game image.

Just as we can use InitObjects to carry out tasks at initialization, so we can use

PreinitObjects to carry out tasks at pre-initialization.

Apart from the stage at which its execute() method is executed, a PreinitObject

works in much the same way as an InitObject. As with InitObjects, we can define as

many PreinitObjects as we like, mix PreinitObject in with other classes, and use its

execBeforeMe and execAfterMe properties to control the order in which PreinitObjects

151

are executed.

For example, suppose at various points in our game we want to check the status of all
objects belonging to our custom Treasure class. To do that, it would be helpful to

have a list of them all stored somewhere; we could build it using a PreinitObject

thus:

treasureManager: PreinitObject
 treasureList = []
 execute()
 {
 for(local obj = firstObj(Treasure); obj != nil;
 obj = nextObj(obj, Treasure))
 treasureList += obj;
 }
;

If we then need to iterate over all the Treasure objects in the course of play, we can

then do so using the list in treasureManager.treasureList. (We’ll be properly

introduced to the firstObj() and nextObj() methods in the next chapter).

The existence of both InitObject and PreinitObject raises the question of which to

use when. The general rule is probably to use PreinitObject wherever possible, and

InitObject otherwise. Situations in which we have to use an initObject rather than

a PreinitObject include:

● Outputting text to the screen, or accepting input from the player.

● Creating Fuses and Daemons.

● Testing the capabilities of the interpreter the game is running on (e.g. with the

systemInfo() function), and setting things up accordingly.

● Setting up something random.

For the full story on Initialization and Pre-Initialization see the chapter on ‘Program
Initialization’ in Part V of the TADS 3 System Manual.

8.5.3 Static Property Initialization

This seems a convenient point to mention one other means of carrying out useful
calculations at compile time, namely static initialization. This is actually carried out
just before pre-initialization, and allows us to assign an expression to an object
property at compile time by using the static keyword. This expression can, for

example, be an object that has to be created dynamically, such as a Vector, e.g.:

 agendaList = static new Vector(15)

As another example, we might want to set the reduceEventAfter property of a

ShuffledEventList to the number of items in its eventList property, since it would

make good sense to reduce the frequency of random atmospheric messages once the

152

player has seen every one of them once. We could do this with:

 eventReduceAfter = (eventList.length())

This would have the advantage that eventReduceAfter would contain the right value

even if we decide to add more atmosphere strings to the eventList. But it would be

more efficient to use static initialization:

 eventReduceAfter = static eventList.length()

With this code, the length of the eventList is calculated at compile time and the

value is assigned to the eventReduceAfter property as a constant value.

Any valid expression may follow the static keyword. For a fuller account, see the

‘Static Property Initialization’ section of the ‘Object Definitions’ chapter in Part III of
the TADS 3 System Manual.

Exercise 15: Try creating the following game. The player character starts in a living
room in wartime London, in which an unexploded bomb lies on the floor. He has 25
turns in which to defuse the bomb, after which it will explode. To defuse the bomb he
has to remove a metal cap from it, which can only be removed with the aid of his
spanner. This is one of his tools, which starts out in his black tool bag, which is out in
the hall. The tool bag also contains his wire cutters and his bomb disposal manual.

Removing the cap from the bomb reveals five coloured wires in the detonator: red,
blue, green, yellow, black. Cutting the right wire will defuse the bomb, but cutting the
wrong one will make it go off. To find out which is the right wire, the player must
determine which kind of bomb it is and then look it up in the bomb disposal manual.
The serial number of the bomb is on the underside of the casing, so the player must
look under the bomb to find it.

Out in the hall an inquisitive rat is scurrying around, so we should display a series of
messages describing what it’s up to. We should also display a series of random
messages describing sounds coming from outside the house. Finally, when there’s only
five turns left, the bomb should start ticking louder, as a hint to the player that he
needs to hurry up.

We’ll add some further finishing touches to this game in the next chapter, but in the
meantime you might like to compare your version with the Bomb Disposal sample
game.

153

9 Beginnings and Endings

9.1 GameMainDef

Most games start with some kind of introductory text before the first room
description, to set the scene and maybe give some brief instructions to the player. The
normal place to do this in the showIntro() method of the gameMain object, which we

have to define for every TADS 3 game:

gameMain: GameMainDef
 showIntro()
 {
 "Welcome to Zork Adventure, a totally original treasure-hunt set in
 the Colossal Underground Cave Empire. Armed only with a bottle
 of water, your trusty carbide lamp, and your wits, you must overcome
 a small army of dwarvish grues and gruesome dwarves to collect the
 famed fifty-five firestones of Fearsome Folly!\b
 First time players should type ABOUT. ";
 }
;

Although we don’t absolutely have to have a showIntro() method, it’s generally a

good idea, and we do absolutely have to have a gameMain object which must be of the

GameMainDef class.

The one property of gameMain we absolutely must define is initialPlayerChar,

which defines which object represents the player character at the start of play. In
most TADS 3 games (especially those created from the starter game templates used
by Workbench) the initial player character is called me (though we could call it

anything we liked), so a minimal gameMain would typically consist of:

gameMain: GameMainDef
 initialPlayerChar = me
;

Previous chapters have sometimes referred to the player character as me, and
sometimes as gPlayerChar; a word of explanation is now in order. gPlayerChar is a

macro defined as:

#define gPlayerChar (libGlobal.playerChar)

In the adv3LibPreinit object (a PreinitObject) the following statement occurs:

gPlayerChar = gameMain.initialPlayerChar;

In other words gPlayerChar (aka libGlobal.playerChar) is pre-initialized to the

value of gameMain.initialPlayerChar, which is usually me. If the player character

remains the same throughout the game, as if often, if not usually, the case, then

154

gPlayerChar and me will refer to the same object throughout the game. It’s then a

matter of preference which of these we use to refer to the player character, although
me is generally quite a bit less typing! If, however, we’re writing a game in which the

player character changes (or may change) in the course of play, it’s probably best to
use gPlayerChar to refer to the current player character throughout.

We can override a number of other properties on gameMain, but most of these are

either ones that are best dealt with in later chapters as they become relevant, or left
for the reader to investigate in due course. A few of the more commonly useful
properties of gameMain include:

● allVerbsAllowAll – by default this is true, but if we set it to nil this restricts

the use of ALL to a handful of inventory-handling verbs. This prevents the
player from taking a brute force approach to game-play and puzzle-solving by
disallowing commands like EXAMINE ALL and SHOW ALL TO BOB.

● beforeRunsBeforeCheck – changes the order of the before() and check()

handling; we’ll come back to this in the ‘More About Actions’ chapter.

● cancelCmdLineOnFailure – this is nil by default; if it’s set to true then if the

player enters multiple commands at once (e.g. north, north, take ball, hit
troll, west) and one of them fails, the remainder are ignored.

● usePastTense – this is nil by default, but if it’s set to true all the library

messages are displayed in the past tense (for use in a game narrated in the
past tense). For more information on this, see the article on ‘Writing a Game in
the Past Tense’ in the TADS 3 Technical Manual (but this can be left until you
actually want to use the past tense).

There’s also a couple of methods of gameMain we might want to use quite commonly.

One is showGoodbye(), which can be used to display a parting message right at the

end of the game, and setAboutBox() which can be used to set up an about box that

displays when players use the Help->About option in their interpreter. This might
typically look something like this:

gameMain: GameMainDef
 initialPlayerChar = me
 setAboutBox()
 {
 "<ABOUTBOX><CENTER>
 ZORK ADVENTURE\b
 Version 1.0\b
 by Watt A. Ripov
 </CENTER></ABOUTBOX>";
 }
;

Or you could make a general purpose about box that takes all its information from the
versionInfo object:

155

gameMain: GameMainDef

 initialPlayerChar = me
 setAboutBox()
 {
 "<ABOUTBOX><CENTER>
 <<versionInfo.name>>\b
 Version <<versionInfo.version>>\b
 <<versionInfo.byline>>
 </CENTER></ABOUTBOX>";
 }
;

Such an automated about box has the merit that it will always accurately reflect
changes made to versionInfo (which we’ll look at more closely in just a moment), so
that such changes only need to be made in one place. Note that you can't set up an
about box (at least, not one that uses the <ABOUTBOX> tag) if you're compiling your
game for the web interface.

For more information on GameMainDef, look up GameMainDef in the Library Reference

Manual.

9.2 Version Info

The other object we have to define, along with gameMain, is versionInfo. This

provides information about the name, version and author of our game, and can
contain additional information for classifying our game. A typical versionInfo object
may look like:

versionInfo: GameID
 IFID = '2b5c2e11-003f-6e0c-4d75-6092f703208b'
 name = 'Bomb Disposal'
 byline = 'by Eric Eve'
 htmlByline = 'by
 Eric Eve'
 version = '0.1'
 authorEmail = 'Eric Eve <eric.eve@hmc.ox.ac.uk>'
 desc = 'A demonstration of Fuse and Daemon classes (and also InitObject,
 PreinitObject, CollectiveGroup and Consultable).'
 htmlDesc = 'A demonstration of Fuse and Daemon classes (and also InitObject,
 PreinitObject, CollectiveGroup and Consultable).'
;

This should be reasonably self-explanatory, but for further information look up GameID

in the TADS 3 Library Reference Manual and read the article on ‘Bibliographic
Metadata’ in the TADS 3 Technical Manual.

There are two methods we may well wish to define on this object, showAbout() and

showCredit(). These methods define what is displayed in response to an about or

credits command respectively, and should always be defined in a reasonably polished
game to give appropriate responses. What we put in showAbout() can be anything

from a brief set of instructions to an explanation of what the game is about with

156

details of special commands and the like, to a full set of help menus. The response to
showCredit() should normally acknowledge the assistance of anyone who has

contributed to our game, including the authors of any extensions we have used and a
list of beta-testers.

For further details of these two methods, look up ModuleID in the Library Reference

Manual.

9.3 Coding Excursus 15 – Intrinsic Functions

TADS 3 defines a number of intrinsic functions, functions built into the system. These
are fairly fully documented in three of the chapters in Part IV of the TADS 3 System
Manual: ‘t3vm Function Set’, ‘tads-gen Function Set’ and ‘tads-io Function Set’. Here
we’ll just take a brief look at some of the more generally useful ones. Most of these
will be from the tads-gen Function Set.

One such function that we have already met is dataType(val), which returns the data

type of its val argument; see section 7.2 above.

Another pair of functions that we’ve met briefly are firstObj() and nextObj().

Together, these can be used to iterate over all objects in the game, or all objects of a
certain class in the game; firstObj(cls) returns the first object of class cls;

nextObj(obj, cls) returns the next object of class cls after obj. So, for example, to

iterate over every object of class Decoration in the game (suppose, for some reason,

we wanted to count the number of Decoration objects our game contained), we could

use the two functions in tandem, either with:

local decorationCount = 0;
local obj = firstObj(Decoration);
while(obj != nil)
{
 decorationCount++;
 obj = nextObj(obj, Decoration);
}

Or, a little more succinctly, with:

local decorationCount = 0;
for(local obj = firstObj(Decoration); obj ; obj = nextObj(obj, Decoration))
 decorationCount++;

Or, if we want to use a library-defined function forEachInstance(), which does part

of this job for us, simply:

local decorationCount = 0;
forEachInstance(Decoration, {x: decorationCount++ }) ;

Another useful pair of functions are max() and min() which return respectively the

maximum and minimum value in their argument lists (which accordingly must contain

157

values all of the same type). For example max(1, 3, 5, 7, 9) would return 9, while

min(1, 3, 5, 7, 9) would return 1 (obviously this is rather more useful when the

argument list contains at least one variable!).

The rand() function can be used both to return random numbers and to make

random choices.

rand(n) (where n is an integer) returns a random integer between 0 and n-1. For

example, rand(10) returns a random number between 0 and 9.

rand(lst), where lst is a list, randomly returns one of the elements of lst.

rand(val1, val2, ... valn) (i.e. where rand() has two or more arguments)

randomly returns one of the arguments.

The randomize() function is used to re-seed the random number generator (to ensure

that we get a different sequence of random choices each time the program is run).

We would typically call randomize() right at the start of our game; if we do so it must

be called in an InitObject (or gameMain.showIntro()) rather than a

PreinitObject; the same applies if we want to do anything random at start up (e.g.

making a random choice of what the safe combination will be, or of which wire to cut
to disable a bomb). Note that as of TADS version 3.1.0 it usually isn't necessary to call
randomize() at the start of the game since TADS effectively does this anyway (except
when running in the Workbench development/debugging environment).

Another pair of generally useful intrinsic functions are toInteger() and toString().

The first of these, toInteger(val) returns the value of val as an integer if val is an

integer, a BigNumber within the integer range (-2147483648 to +2147483647) or a

string comprising of digits (possibly with leading spaces, a leading + or a leading -). If
val is true or nil the function returns true or nil respectively. Otherwise a runtime error
is generated.

The second, toString(val), returns a string representation of val if val is an integer,

BigNumber, string, true or nil. Otherwise it throws an error.

The functions in the tads-io set are less generally useful to game authors than might
generally appear. The systemInfo() function is useful if we want information about

the interpreter and operating system our game is running on (e.g. to test whether it
has graphical or HTML capabilities); for details see the description of this function in
the ‘tads-io Function set’ chapter of the System Manual.

The various bannerXXX functions look interesting, but are quite tricky to use in
practice. If you want banner functionality (the ability to divide the interpreter window
up into sub-windows) in your game, consult the article on ‘Using the Banner API’ in
the Technical Manual.

The functions morePrompt() (for pausing output and asking the player to press a

key), clearscreen() (for clearing the screen), inputKey() (for reading a single

158

keystroke) and inputLine() (for reading a line of text input by the player), all look as

if they should do something useful, but for various reasons they probably won’t do
quite what we want or expect; it’s better to avoid them and use the alternatives
suggested below:

● Instead of morePrompt() use inputManager.pauseForMore(true);

● Instead of inputKey() use inputManager.getKey(nil, nil);

● Instead of inputLine() use inputManager.getInputLine(nil, nil);

● Instead of clearscreen() use cls();

For a fuller explanation of this, see the article ‘Some Common Input/Output Issue’ in
the TADS 3 Technical Manual. The brief story is that TADS 3 buffers output through
something called the transcript, part of the effect being that the raw intrinsic
functions won’t generally do their input and output at the exact point we expect them
to; the methods of inputManager take the transcript into account, so that things will

work as expected. Another reason for using the alternatives to the raw tads-io
functions is that these functions won't work in a game compiled for the web interface
(whereas the alternatives will).

9.4 Ending a Game

We’ve now seen several ways to do things at the beginning of a game, but we’ve not
yet seen how to bring a game to an end.

The normal way to end a TADS 3 game is to call the function finishGameMsg(). This

is called with two arguments: finishGameMsg(msg, extra). The first parameter, msg,

can be a single-quoted string or a FinishType object. If it’s a single-quoted string,

this will be displayed as the game ending message, preceded and followed by three
asterisks in the standard IF format; for example, calling finishGameMsg('All Over',

[]) will end the game displaying:

*** All Over ***

Alternatively the msg parameter can be a FinishType object, which can be used to

display one of the very common ending messages:

● ftDeath – You have died

● ftFailure – You have failed

● ftGameOver – Game Over

● ftVictory – You have won

If there was some other message you thought you were going to use frequently, it
would be very easy to define your own FinishType object, e.g.

159

ftWellDone: FinishType finishMsg = 'Well Done!' ;

The second parameter, extra, should contain a list (which may be an empty list) of
FinishOption objects. When the game ends the player is always offered the QUIT,

RESTART and RESTORE options; the extra parameter defines which additional
FinishOptions the player is offered. The library defines the following FinishOption

objects:

● finishOptionAmusing – offer the AMUSING option

● finishOptionCredits – offer the CREDITS option

● finishOptionFullScore – offer the FULL SCORE option

● finishOptionQuit – offer the QUIT option

● finishOptionRestart – offer the RESTART option

● finishOptionRestore – offer the RESTORE option

● finishOptionScore – offer the SCORE option

● finishOptionUndo – offer the UNDO option

As just noted, the QUIT, RESTART and RESTORE options are always offered as
standard, so there’s no need to specify any of these in the extra parameter. The
difference between the Full Score and the Score options is that the former displays a
lists of achievements that make up the score, whereas the latter simply displays the
final score.

So, for example, we might end the game with:

finishGameMsg(ftVictory, [finishOptionUndo, finishOptionFullScore]);

The game will then be ended with the message "*** You have won ***", following
which the player will be offered the RESTART, RESTORE, FULL SCORE, UNDO and QUIT
options.

If we include the AMUSING option, we also need to define what it does. To do this we
need to modify finishOptionAmusing and override its doOption() method. This can

then do whatever we like, but at the end it should normally return true in order to
redisplay the list of options. For example:

modify finishOptionAmusing
 doOption()
 {
 "Have you tried asking Attila the Hun about his favourite opera,
 or drinking from the bottle marked <q>Cat Poison</q>, or riding
 the sea-horse, or smelling the drain in the sewerage room?\b";

 return true;
 }
;

160

Of course the AMUSING option could do something much more sophisticated than
this, up to and including displaying a menu of sub-options.

It would also be possible, though seldom ever necessary, to define a FinishOption of
your own. The following example illustrates the principle:

finishOptionBoring: FinishOption
 desc = "see some truly <<aHrefAlt('boring', 'BORING', 'BORING',
 'Show some boring things to try')>> things to try"

 responseKeyword = 'boring'
 responseChar = 'b'

 doOption()
 {
 "1. When play begins, try pressing Z exactly 1,234 times.\n
 2. Try climbing the north wall of the sitting room.\n
 3. Ask every NPC you meet everything you can think of about the
 first ten Roman emperors.\n
 4. Establish just how many doors, boxes and containers the bent
 brass key <i>won't</i> unlock.\b";

 return true;
 }
;

For more details (should you wish to create your own FinishOption and actually need

more details), look up FinishOption and the various finishOptionXXX objects in the

Library Reference Manual.

Exercise 16: Complete the Bomb Disposal example from Exercise 15 by adding
appropriate introductory text and suitable winning and losing endings. Also add start-
up code to randomize which is the correct wire for the player to cut.

161

10 Darkness and Light

10.1 Dark Rooms and Light Levels

As we’ve already seen, we can use the DarkRoom class to define a rooms that are dark

unless the player manages to provide a light source. We can make other kinds of
Room, such as OutdoorRoom, equally dark by setting their brightness property to 0.

When the player character enters such a dark place, the player will see it described
thus:

In the dark
It’s pitch black!

If this isn’t quite what we want, it’s easy enough to customize. We can override the
roomDarkName and roomDarkDesc to change the way the name and the description of

the dark room is shown. For example, if the player character descends a flight of
stairs into what’s obviously a cellar (even though it’s dark), it might be better if both
the room name and its description reflected that:

cellar: DarkRoom 'Cellar'
 "This cellar is relatively cramped, with most of the space taken up by
 the rusty old cabinet in one corner and the pile of junk in the other.
 A flight of stairs leads back up. "

 roomDarkName = 'Cellar (in the dark)'
 roomDarkDesc = "It's too dark to make out much in here apart from the
 dim outline of the stairs leading back up out of the cellar. "

 up = cellarStairs
;

Then, when the player character enters the darkened cellar, it would appear as:

Cellar (in the dark)
It’s too dark to make out much in here apart from the dim outline of the stairs leading back up out of
the cellar.

This is fine, but we’ve now given ourselves another problem: we’ve mentioned the
stairs leading back up out of the cellar, but while the cellar is in darkness the player
won’t be able to interact with them, either to examine them or to climb them (both of
which would be perfectly reasonable actions under the circumstances). The simplest
solution is to give the staircase object a brightness of 1. According to the comment

in the Library Reference Manual a brightness of 1 means that the “object is self-

illuminating, but doesn’t give off enough light to illuminate other objects. This is
suitable for something like an LED digital clock.” In practice it’s equally suitable for
any object we want to be visible in an almost-dark place, for example a dimly-lit exit

162

or bulky furniture.

It may be that we’d want such objects described differently (specifically in response to
examine) when the room is dark from when it is light. To that end we need to know
how light or dark the room is. We can’t just test the brightness property of the Room,
since that won’t tell us whether the player is carrying a lamp, or whether there’s a
candle burning nearby, or whether there’s some other source of light. The most
general way to test the light level somewhere is to use the senseAmbientMax()

method. This is called with one argument, which is a list of the senses we’re
interested in. To be absolutely copper-bottomed safe we could call it with
gPlayerChar.sightLikeSenses as the argument, but in 99% of games it’ll almost

certainly be perfectly safe just to use [sight]. We could call the method on any

object within visible range (such as the room itself, or the actor, or some object that
would be in plain sight in the room if the room were lit); but we may as well call it on
the object we’re interested in. For example, in the case of the flight of stairs leading
out of the cellar, we might define:

+ cellarStairs: StairwayUp 'dim outline/flight/stairs' 'flight of stairs'
 desc()
 {
 if(senseAmbientMax([sight]) > 1)
 "The stairs look well worn, but solid enough. ";
 else
 "It's just a dim outline in the dark; you as much sense as see
 that there's a flight of stairs there, and that only because
 you've just come down them. ";
 }

 brightness = 1
;

An alternative to giving the cellarStairs (or other such objects) a brightness of 1

is to use the getExtraScopeItems() method to add them to scope. The standard

library already uses this to put the floor of a dark room in scope, so we must
remember to add any additional objects to the inherited behaviour. For example, we
could add the stairs to scope in the dark like this:

cellar: DarkRoom 'Cellar'
 "This cellar is relatively cramped, with most of the space taken up by
 the rusty old cabinet in one corner and the pile of junk in the other.
 A flight of stairs leads back up. "

 roomDarkName = 'Cellar (in the dark)'
 roomDarkDesc = "It's too dark to make out much in here apart from the
 dim outline of the stairs leading back up out of the cellar. "

 up = cellarStairs

 getExtraScopeItems(actor) { return inherited(actor) + cellarStairs; }
;

This behaves a little differently from giving the cellarStairs a brightness of 1. It

163

should still allow the player character to climb the stairs, but an attempt to examine
them will be met with the response "It's too dark to do that". Neither method is
necessarily better than the other, it depends what effect we want, but if we’re
implementing a room that’s in near-total darkness, and we don’t particularly want to
provide a separate description for the objects we want to be in scope when it’s dark,
getExtraScopeItems() may be the way to go.

One other action that behaves differently in the dark is moving around. The library
applies the convention that a TravelConnector is visible in the dark if and only if its

destination is lit (if I’m standing in a dark room I should be able to see the door if
there’s light on the other side of it). Moreover, when the player character attempts to
move from one dark location to another, this is generally disallowed. This behaviour is
enforced on the darkTravel() method of TravelConnector, which in turn calls the

roomDarkTravel() method of the actor’s location. This is defined on BasicLocation,

and by default it simply calls cannotGoThatWayInDark() to display a message saying

why travel in the dark is prohibited followed by exit to stop the action. We can thus

override any of these methods if we wish, either to allow dark-to-dark travel through a
specific connector, or to allow dark-to-dark travel in a specific location, or to change
the message that’s displayed when dark travel is not allowed. For example, we might
do this:

modify DarkRoom
 cannotGoThatWayInDark()
 {
 "You'd better not go blundering around in the dark; you might be eaten
 by a grue! ";
 }
;

Or, if we were feeling a bit meaner:

class UndergroundRoom: DarkRoom
 roomDarkTravel()
 {
 "Blundering around in the dark is a perilous business. You are eaten
 by a grue!<.p>";
 finishGame(ftDeath, [finishOptionUndo, finishOptionFullScore]);
 }
;

Finally, since we gave the library’s definition of a brightness level of 1, for the sake of
completeness we should perhaps give its definition of all the brightness levels:

0: The object is giving off no light at all.

1: The object is self-illuminating, but doesn't give off enough light to illuminate any
other objects. This is suitable for something like an LED digital clock.

2: The object gives off dim light. This level is bright enough to illuminate nearby
objects, but not enough to go through obscuring media, and not enough for certain

164

activities requiring strong lighting, such as reading.

3: The object gives off medium light. This level is bright enough to illuminate nearby
objects, and is enough for most activities, including reading and the like. The
intervention of an obscuring medium reduces this level to dim (2).

4: The object gives off strong light. This level is bright enough to illuminate nearby
objects, and the intervention of an obscuring medium reduces it to medium light (3).

10.2 Coding Excursus 16 – Adjusting Vocabulary

We’ll shortly be looking at a number of ways of providing light. Many light sources can
be either lit or unlit; when lit the player should be able to refer to them as ‘lit’; when
unlit the player should be able to refer to them as ‘unlit’. We therefore need some
mechanism for adjusting an object’s vocabulary during the course of play. This
excursus will explore three ways of doing it.

10.2.1 Adding Vocabulary the Easy Way

As we’ve seen, we can define the initial vocabulary of an object (the words the player
can use to refer to the object) by assigning it to the object’s vocabWords property.

This takes the form of a list of adjectives, separated by spaces, followed by a list of
nouns, separated by slashes, and a list of plurals separated by asterisks (or starting
with an asterisk). For example 'quick brown fox/animal*fox*foxes'. But what happens
if we need to change an object’s vocabulary during the course of play? If the fox is
killed we might want to add 'dead' to its vocabulary; if a vase were dropped on the
floor we might want to add 'broken' to its vocabulary; when the tall dark stranger
eventually introduces himself we might want to add 'bob' to his vocabulary; how can
we go about it?

One thing we can’t do is simply change the vocabWords property at run-time, or the

underlying noun and adjective properties. At least, we can change them, but it won’t

do any good; once the game is running we’re beyond the point where the library does
anything with these properties.

The easiest way to add new vocabulary to an object is by calling its
initializeVocabWith() method. This takes one argument, a string in the same

format as that used for vocabWords. If we want to add only adjectives, and no nouns

or plurals, we can end the string with a dash (-) in what would otherwise have been
the slot for the noun (or nouns).

So, for example, we could add the desired extra vocabulary in the three cases above
by calling fox.initializeVocabWith('dead -');

vase.initializeVocabWith('broken -'); and bob.initializeVocabWith('bob').

Note that calling initializeVocabWith() does not remove any existing vocabulary from
an object (the vocabulary in the argument is added to that for the object; it does not
replace it).

165

10.2.2 Dictionary

The second way we can adjust vocabulary at run time is through manipulating the
game’s dictionary. This will be of the intrinsic class Dictionary, and will usually be

called cmdDict. The two methods most useful for manipulating a Dictionary are:

● addWord(obj, str, vocabProp) – adds the string str to the dictionary as a

reference to the object obj associated via vocabProp (&noun, &adjective,

&plural, etc.). str can also be a list of strings. If we try to add a combination

that already exists, it’ll simply be ignored.

● removeWord(obj, str, vocabProp) – removes the association of str from obj

as vocabProp, where these parameters have the same meaning as in
addWord(). If the word association defined by the parameters does not exist in

the dictionary, calling this method has no effect.

For example, an alternative way of adding the vocabulary in our previous examples
would be to call cmdDict.addWord(fox, 'dead', &adjective);

cmdDict.addWord(vase, 'broken', &adjective); and cmdDict.addWord(bob,

'bob', &noun). If the fox had previously been described as 'lively' we might also

want to call cmdDict.removeWord(fox, 'lively', &adjective).

For more information on the Dictionary class, see the Dictionary chapter in Part IV of
the TADS 3 System Manual.

10.2.3 ThingState

Some kinds of object, such as light sources which can be either lit or unlit, may switch
states quite frequently. In such cases we may want particular vocabulary (such as ‘lit’
and ‘unlit’) associated with particular states. We could write code to add and remove
words from the dictionary each time such objects change state, but this is perhaps a
little cumbersome, and the library provides a neater mechanism for handling such
cases, the ThingState class.

When an object can be in one of several states, we can define these states as
ThingState objects. For example, for light sources the library defines

lightSourceStateOff and lightSourceStateOn. To associate these states with an

object or class of object, we list all the possible states of that object in its allStates

property, and its current state in its getState property, for example:

class LightSource: Thing
 allStates = [lightSourceStateOff, lightSourceStateOn]
 getState = (isLit ? lightSourceStateOn : lightSourceStateOff)
 isLit = nil
;

We can then define the state-specific vocabulary words relating to particular states in
the stateTokens property of the relevant ThingState objects. This should hold a list

166

of strings defining vocabulary words that will only be recognized for an object (such as
a LightSource) when it’s in this state. For example:

lightSourceStateOff: ThingState
 stateTokens = ['unlit']
;

lightSourceStateOn: ThingState
 stateTokens = ['lit']
;

For this to work, 'lit' and 'unlit' must also be included in the vocabWords of the objects

to which these ThingStates apply (in this case the LightSource class). In other

words, ThingStates do not provide a method for adding new vocabulary to an object;
they instead provide a mechanism for filtering the existing vocabulary (and so, for
example, the library defines the LightSource class as having the adjectives 'lit' and

'unlit').

But this is not the only mechanism ThingState provides. It also provides a

mechanism for providing extra pieces of parenthetical information, like “(providing
light)”, added to the name of the item in inventory listings and the like. The
listName(), inventoryName(), and wornName() methods define the additional

information to be added to the name of the item in room/contents listings, inventory
listings, and listings of items worn by the actor respectively. Each of these methods
take a single parameter, lst, which contains a list of the objects concerned; this will
either be a list containing a single element (the item to be listed), or a list of
equivalent items. By default inventoryName() and wornName() return the value of

listName(), while the listName() method returns the value of the listName_

property (note the underscore). This allows a ThingState to be initialized via a

template (listName_ being the property assigned a value via the single-quoted string

in the template). Thus, for example, the full definition of the two ThingStates
mentioned above is:

lightSourceStateOn: ThingState 'providing light'
 stateTokens = ['lit']
;
lightSourceStateOff: ThingState
 stateTokens = ['unlit']
;

The library only defines half a dozen of these ThingState objects; two for use with

the LightSource class, two for use with the Matchstick class; and two for use with

the Wearable class. There is, however, nothing to stop us defining ThingStates of our

own, and no reason why we shouldn’t define them for individual objects if it’s useful to
do so, giving them whatever additional methods or properties we choose.

For further details, look up ThingState in the Library Reference Manual.

167

10.3 Sources of Light

If we define one or more dark rooms in our game, the chances are we’re expecting
our players to find some way of bringing light to them. Our next task, then, is to look
at the various ways the TADS 3 library provides support for this.

The most basic way of providing a light source in TADS 3 would be to change the
brightness of some Thing to 2, 3 or 4. So, for example, we might define:

magicCrystal: 'magic glowing eerie light/crystal*crystals' 'magic crystal'
 "The crystal glows with a pure but eerie light. "
 brightness = 3
;

Once the player character has this magic crystal and is carrying it around with him or
her, it'll provide light to see by wherever he or she goes.

For a slightly more sophisticated light source we can use the LightSource class.

When a LightSource is lit it will be listed as “(providing light)” (via the ThingState

mechanism we’ve just described above). Whether or not a LightSource is lit is

determined by whether its isLit property is true or nil. We can use the makeLit(lit)

method to switch between these two states. The brightness of a LightSource changes

between the values of its brightnessOn and brightnessOff properties depending on

whether or not it’s lit; LightSource defines its brightness property as:

brightness { return isLit ? brightnessOn : brightnessOff; }

By default, brightnessOn is 3 and brightnessOff is 0. If we wanted to implement a

LightSource with a faintly glowing LED that made it just visible even when off, but a

lower powered light even when lit, we could, for example, change these values to 2
and 1.

A very common kind of light source both in IF games and in real life is a flashlight (or
“torch” in British parlance) which can be switched on and off. TADS 3 provides the
Flashlight class for this kind of light source. Flashlight inherits from LightSource

and hence has all the same methods and properties, but in addition can be turned on
and off by the player (through commands like switch flashlight on). A Flashlight
also has an isOn property to determine whether or not it is switched on, and a

makeOn(stat) method to turn it on and off programmatically; this method also takes

care of keeping the isLit property in sync with the isOn property, so if we want to

change the on/off or lit/unlit status of a Flashlight in our program code we should

always do so using makeOn() (as opposed to manipulating the isOn or isLit

properties directly or by using makeLit()). By default a Flashlight starts switched off

and unlit; if we want a Flashlight to start switched on and lit we can set the initial

value of its isOn property to true (isLit will then automatically follow).

Although, as its name suggest, the Flashlight class can most obviously be used for

168

portable flashlights/torches, it can of course be used for any kind of light source we
want the player to be able to switch on and off, including lamps, lanterns,
searchlights, and light-switches.

If we want to enforce the condition that the flashlight should only work when it has a
battery in it, we have to write our own code to do it. One approach would be to make
the flashlight a RestrictedContainer that can contain only the battery, and then

apply the appropriate checks for the presence and removal of the battery, something
along the lines of:

flashlight: RestrictedContainer, Flashlight 'flashlight/torch' 'flashlight'
 validContents = [battery]
 makeLit(stat)
 {
 if(stat && !battery.isIn(self))
 failCheck('Nothing happens; presumably because there's no
 battery. ');
 else
 inherited(stat);
 }
 notifyRemove(obj)
 {
 if(obj == battery && isLit)
 {
 makeLit(nil);
 "Removing the battery makes the flashlight go out. ";
 }
 }
 notifyInsert(obj, newCont)
 {
 inherited(obj, newCont);
 if(obj == battery && isOn)
 {
 makeLit(true);
 "The flashlight comes on as you insert the battery. ";
 }
 }
;

In this case we allow isLit to become decoupled from isOn, since removing the

battery (say) will stop the flashlight from being lit, but it won’t move the on-off
switch; and if the switch is left in the ‘on’ position then presumably the flashlight
should light as soon as the battery is re-inserted.

In this example, we assume a battery with an effectively infinite life. If we wanted to
implement a battery with a finite life, we would have to make our code more
sophisticated still. Alternatively, we could consider using the FueledLightSource class

(another subclass of LightSource), which might more typically be used for things like

oil lamps (which burn a certain amount of fuel each turn and go out when the fuel is
exhausted).

The most important new property FueledLightSource defines is fuelLevel, which,

as its name suggests, defines the current amount of fuel in the FueledLightSource.

169

We can set this to an initial value, and increase it as appropriate if, for example, the
player pours oil into the lamp. The library assumes that a fueled light source
consumes one unit of fuel for each turn it’s lit, and there’s probably no good reason
ever to change that, unless perhaps we have a number of different fueled light
sources all using the same kind of fuel (oil, say), but consuming it at different rates. If
we do want to change the rate of consumption, the easiest place to do it may be in
the consumeFuel() method; e.g., to double the rate of consumption we could define:

 consumeFuel(amount) { fuelLevel -= 2 * amount; }

The need to do this is, however, likely to be rare.

By default the library assumes that a FueledLightSource is its own fuel source. If we

want to change that assumption we can override the fuelSource property to point to

some other object (a battery, say), in which case this other object must define the
methods getFuelLevel() and consumeFuel(amount). Both of these would probably

work via a fuelLevel property, e.g.:

battery: Thing 'small red battery*batteries' 'small red battery'
 fuelLevel = 40
 getFuelLevel() { return fuelLevel; }
 consumeFuel(amount) { fuelLevel -= amount; }
;

Incidentally, this battery is twice as generous with its initial fuel level as the library
default for a FueledLightSource, which defines an initial fuelLevel of 20 (which we

can, of course, easily change if we like by overriding it).

FueledLightSource defines two further methods that may be of particular interest,

sayBurnedOut() and burnDaemon() (neither of which take any arguments). The first

of these simply displays a message to say that the fueled light source has burnt out,
so if we don’t like the default message provided by the library we can provide our own
simply by overriding this method. The burnDaemon() method is responsible for

consuming the fuel, and making the light go out once the fuel is exhausted, calling the
sayBurnedOut() method at that point. Although we probably won’t often need to

change that behaviour, we might often want to add to it in order to provide the player
with warning messages when the light is about to go out, something like:

lamp: FueledOilLamp 'oil lamp/lantern*lamps' 'oil lamp'
 burnDaemon()
 {
 switch(fuelLevel)
 {
 case 3: "The lamp grows dim. "; break;
 case 2: "The lamp's flame starts to gutter. "; break;
 case 1: "The lamp seems about to go out. "; break;
 }
 inherited;
 }
;

170

A particular sub-type of FueledLightSource that the library implements as standard

is the Candle. This is a type of fueled light source that can be lit by setting fire to it. It

defines the properties okayBurnMsg and outOfFuelMsg which we can, if we wish,

override to provide our own descriptions of the Candle being lit or going out. It also
defines the method canLightWith(obj) which by default simply returns true; this

doesn’t mean that a Candle can be lit with every single object in the game, it just
means that by default a Candle doesn’t put any extra restrictions on what it can be lit
with (beyond the obvious fact that it must be something that’s itself alight). The
canLightWith(obj) method thus allows us to put further restrictions on what will

light the Candle.

Although the class is called Candle, it can be used for any kind of fueled light source
that provides light by burning, and so could be used for (flaming) torches, oil lanterns,
coal fires and the like. One point to note, however, is that when a Candle burns out, it
is simply reported as being out of fuel. This may be fine for an oil lantern, coal fire, or
some kind of torches, but when a real-life candle burns out what we’re left with is
generally some kind of stub, so we might want to provide some mechanism for
transforming the candle into a stub. One way might be to write a desc method that

changes the description of the candle according to its fuelLevel, and a

sayBurnedOut() method that transforms it into a stub; for example:

redCandle: Candle 'red candle*candles' 'red candle'
 desc()
 {
 if(fuelLevel > 1)
 "It's about <<fuelLevel>> centimetres long<< isLit ? ', and burning
 merrily' : ''>>. ";
 else
 "It's just a stub. ";
 }

 sayBurnedOut()
 {
 "The candle goes out, leaving a mere stub. ";
 name = 'candle stub';
 initializeVocabWith(name);
 }

 bulk = (fuelLevel / 4)
 weight = (bulk)
 outOfFuelMsg = 'There\'s only a stub left; it's impossible to light it. '
;

One thing we can light a candle with is another lit candle. To add that behaviour to a
Candle, we just need to include FireSource in its class list (before Candle, since

FireSource is a mix-in class). All the FireSource class does is to allow burn with to

pass the verify() stage; the rest is left up to the object being burned. One of the
commonest kinds of fire sources used to set light to other objects are matchsticks,

171

and the library provides a Matchstick class to represent those. A TADS 3 Matchstick

is self-igniting (the player can light a matchstick without the help of another object),
burns for a short time (by default two turns) with a feeble light (by default a
brightness of 2) and, while it’s still burning, can be used to light burnable objects such
as Candles. Once it’s burned out, a Matchstick simply disappears.

We can change the length of time a Matchstick burns for and its brightness when lit by
overriding its burnLength and brightnessOn properties.

Matchstick is one of the three TADS 3 classes that has an associated pair of
ThingStates:

matchStateLit: ThingState 'lit'
 stateTokens = ['lit']
;
matchStateUnlit: ThingState
 stateTokens = ['unlit']
;

For further details of how TADS 3 Matchsticks work, look up Matchstick in the Library
Reference Manual.

Matchsticks don’t generally come singly but in books (or boxes) of matches. For this
purpose TADS 3 defines the Matchbook class, which we might typically use like this:

modify Matchstick
 vocabWords = 'match/matchstick*matches*matchsticks'
 name = 'match'
;

Matchbook 'matchbook*matches' 'matchbook'
;

+ Matchstick;
+ Matchstick;
+ Matchstick;
+ Matchstick;
+ Matchstick;

This only gives the Matchbook five matches; in practice we may often want to give it
rather more, but the principle should be clear from the example.

Exercise 17: Write a short game in which the player character has to explore a small
network of dark caves to find a magic glowing crystal. Implement the full variety of
different kinds of light sources for exploring the caves. The player character starts
only with a book of matches. There’s a candle in the first cave (but only with a limited
life). Another cave contains an oil lamp, but the supply of oil is separate. Another cave
contains a flashlight, and the final cave contains a rusty old box containing the crystal.
When you’ve done, compare your version with the LightFire.t sample game.

172

11 Nested Rooms

11.1 Types and Characteristics of NestedRoom

Back in chapter 5 we discussed the containment model in TADS 3, and saw how
various classes such as Container and Surface can be used to put things in and on.

But while these classes can contain things, they can’t contain actors, and, in particular
they can’t contain the player character. If we want the player character or some other
actor to be inside or on top of some object, we need to use one of the NestedRoom

class.

There are four main kinds of NestedRoom, and three more specialized kinds we’’ll look

at later. In this section we’ll concentrate on the four common kinds:

● Chair – a NestedRoom an actor would typically sit on (but, by default, can also

stand on); we’d normally use this for chairs, sofas and the like.

● Bed – a NestedRoom an actor would typically lie on (but, by default, can also sit

or stand on); we’d normally use this for beds, cots, hammocks and the like.

● Platform – a NestedRoom an actor would typically stand on (but, by default,

can also sit or lie on); we’d normally use this for things like a stage; we could
also use it for rugs, carpets and so forth if we want actors to be able to stand
on them, or for the upper surface of desks, tables and the like if we want actors
to be able to stand on them.

● Booth – a NestedRoom an actor would typically stand in (but, by default, can

also sit in and lie in); we’d typically use it for large wardrobes, closets, chests
and boxes large enough to get in, shallow pits and the like. A Booth can be

made openable by preceding it with the Openable class in its class list.

A NestedRoom is any object that isn’t a room but which can contain an actor. All
NestedRoom classes have quite a few things in common. For one thing, travel in and
out of a NestedRoom is handled a bit differently from travel between Rooms. No travel
notifications are triggered, and normally no automatic look around; an actor who
enters a NestedRoom is not considered to be leaving the room in which that
NestedRoom is located (if I sit on a chair I’m still in the room that contains the chair);
likewise leaving a NestedRoom is not counted as entering the room in which it’s
located (when I get out of the chair I’m not entering the study, I was there all along).
Normally the command out will take the player character out of whatever
NestedRoom s/he’s in, but otherwise issuing a movement command (like east or up)
when in a NestedRoom will behave just as if it had been issued when in the enclosing
Room (taking the player character out of the NestedRoom via an implicit action before
carrying out the travel command).

For the most part, we can use NestedRooms in a fairly straightforward, intuitive way.

173

For example, to set up a small bedroom with a single bed and a wooden chair, we
could just do this:

bedroom: Room 'Bedroom'
 "This bedroom is so small that there's little space for anything apart
 from the single bed crammed hard against the wall. The only way out is
 via the door to the east. "
 east = bedroomDoor
 out asExit(east)
;

+ bedroomDoor: Door 'door*doors' 'door'
;

+ Bed, Heavy 'single bed*beds*furniture' 'single bed'
;

+ woodenChair: Chair 'small wooden chair*chairs furniture' 'wooden chair'
 initSpecialDesc = "A small wooden chair next to the bed takes up most
 of the spare space in the room. "
;

With this definition, the player could sit or stand on the chair, or sit, stand or lie on the
bed. The command get on bed will result in the player character lying on the bed,
while get on chair will result in the player character sitting on the chair. The bed is
too heavy to pick up, but the player character can pick up the chair and can also put it
on the bed. It’s also possible to get on the chair while the chair is on the bed. There is
one subtlety: if the player types out while the player character is on the bed, the
player character will get off the bed; if the player then types out again the player
character will go through the door. If, however the player types east while the player
character is on the bed, the player character will get off the bed (via an implicit
action) and then go through the door.

11.2 Nested Rooms and Postures

In the previous section we talked about actors sitting on chairs, lying on beds, and
standing on platforms. This introduces a concept we haven’t formally met before, that
of an actor’s posture. The library defines a Posture class and three objects of that

class: standing, sitting and lying. By default all actors (including the player

character) start out standing. An actor’s current posture is held in its posture

property (which must normally be one of standing, sitting, or lying, unless we

define additional postures in our game). We can change an actor’s posture with the
makePosture(newPosture) method, which simply changes the value of the posture

property.

To create a new posture (such as kneeling), we’d first need to define the actions that
put an actor in that posture, (such as KneelAction for the intransitive command kneel
and KneelOnAction for transitive commands such as kneel on carpet). Defining the
kneeling posture is then straightforward, even though we need to define quite a few

174

properties and methods:

kneeling: Posture
 tryMakingPosture(loc) { return tryImplicitAction(KneelOn, loc); }
 setActorToPosture(actor, loc) { nestedActorAction(actor, KneelOn, loc); }
 msgVerbIPresent = 'kneel{s} down'
 msgVerbIPast = 'knelt down'
 msgVerbTPresent = 'kneels{s}'
 msgVerbTPast = 'knelt'
 participle = 'kneeling'
;

This example serves to show both how to define a new posture, and how the existing
postures work. If our game takes place entirely in the present tense (as most games
generally do), there’s obviously no need to define the msgVerbXPast properties. The

difference between the first two methods is that tryMakingPosture() tries to put the

actor into the posture via an implicit action (e.g. “(first kneeling on the carpet)”) while
the setActorToPosture() method does the same thing with an ordinary action (e.g.

“Bob kneels on the carpet”).

For the most part we probably won’t often need to define new postures, and won’t
have to worry much about the inner workings of the postures the library defines. It is,
however, worth being aware of the participle property. Suppose we write a room

description like this:

EdgeOfForest: OutdoorRoom 'Edge of Forest' 'the edge of the forest'
 "You are standing just at the start of a narrow path that snakes off
 mysteriously into the dark forest. "
 north = forestPath
;

The trouble is that by mentioning the player character's posture in the room
description, we have just given a hostage to fortune; the player who issues the
command sit or lie at this point will immediately turn our room description into a lie.
We can avoid this by using the participle property of the player character's current

posture instead:

EdgeOfForest: OutdoorRoom 'Edge of Forest' 'the edge of the forest'
 "You are <<me.posture.participle>> just at the start of a narrow path
 that snakes off mysteriously into the dark forest. "
 north = forestPath
;

Our room description will then automatically adapt to whatever posture the player
character adopts.

Nested Rooms descending from the BasicChair class (as all four Nested Room types

introduced in the previous section) define a number of properties and methods
relating to actor posture. Unfortunately it’s not immediately obvious what these do
and how they relate to one another. We’ll start with the three posture-related
properties:

175

● allowedPostures – this is the easiest of the three to understand; this property

contains a list of the properties that an actor is allowed to adopt in or on this
Nested Room object. For example, if we were using a Chair object to represent

a large sofa, it may also be possible to lie on the sofa, so we’d override its
allowedPostures to [sitting, standing, lying]. Conversely, if we were

using a Chair object to represent the back seat of a cramped vehicle, it might
only be possible to sit on it (and not to stand on it), so we might override its
allowedPostures property to just [sitting]. It’s a bad idea, however, to

override the allowedPostures property so as to exclude the most obvious

posture for a class (sitting for a Chair, standing for a Platform, or lying for a

Bed), since this will effectively break it.

● obviousPostures – this also contains a list of postures, but in this case these

are the obvious postures for the object (e.g. [sitting] for a Chair or [lying]

for a Bed). The main effect of this is that adopting an allowed posture will not

be allowed as an implicit action unless it’s also an obvious posture.

● defaultPosture – this defines what one might expect, namely the most

obvious posture for each kind of object (standing for a Platform, sitting for a

Chair, or lying for a Bed). It also defines the posture an actor adopts when

entering the object from the outside (so changing the defaultPosture of a Bed

to sitting will make the player character sit on the bed in response to a get on
bed command). Furthermore, it controls the posture an actor adopts when
entering this object from a Nested Room contained within this object; for
example, if there’s a chair on the bed, then the defaultPosture property of the

bed defines the posture an actor adopts on leaving the chair. It also controls the
posture an actor must be in before entering a Nested Room inside this object
(e.g. if a chair is on a bed it enforces the curious condition that the player
character must be lying on the bed before getting on the chair).

Of course the posture may be defined by the player’s command: if the player types lie
on bed or sit on bed or lie on bed then the player will simply adopt the posture
commanded. Alternatively an actor may be moved to a Nested Room via an implicit
action (e.g. if the chair is on the bed and the player types get on chair the player
character will be moved to the bed by an implicit action before sitting on the chair).
The implicit action to be carried in this case is defined by the Nested Room’s
tryMovingIntoNested() method, which then calls

defaultPosture.tryMakingPosture(self). There’s also a corresponding

tryRemovingFromNested() method that attempts to remove the actor from Nested

Room via an implicit action. The similar removeFromNested() takes the current actor

(gActor) out of the Nested Room via an ordinary (non-implicit) action.

One way we can make things go wrong is by excluding defaultPosture from the list

of obviousPostures. If, for some strange reason, we overrode obviousPostures on

176

the bed to just [sitting], then we could get a transcript like this:

>put chair on bed
(first taking the chair)
Done.
>get on chair
You must lie on the bed first.

The reason being that the game won’t allow an actor to adopt a posture in/on a
Nested Room via an implicit action unless the posture is one of the obviousPostures

for that NestedRooms.

The moral to be drawn is that NestedRooms are straightforward enough to use if we
just accept their behaviour straight out of the box, but can become full of traps for the
unwary once we start to customize which postures they’re meant to work with. Adding
or removing the odd allowedPosture is reasonably straightforward; beyond that we

need to be very careful that we don’t make its allowedPostures, obviousPostures and
defaulPosture mutually incompatible.

11.3 Nested Rooms in Complex Containers

It may happen that we want to make a bed the player character can both lie on and
put things under, or a desk s/he can both stand on and put things under and behind.
Making a desk the player can stand on is simple enough: we just make it a Platform

instead of a Surface. This automatically allows us to put things on it as well as stand

on it. But if we also want to allow objects to be put under and behind the desk, we
need to make the desk a ComplexContainer. As of version 3.0.17, we can simply do

this:

desk: ComplexContainer 'sturdy desk*desks' 'sturdy desk'
 "It's large, and quite sturdy enough to stand on. "
 subUnderside: ComplexComponent, Underside { }
 subRear: ComplexComponent, RearContainer { }
 subSurface: ComplexComponent, Platform { }
;

Our ComplexContainer desk will then automatically handle commands such as get on
desk, stand on desk, sit on desk and get off desk, redirecting them from the
ComplexContainer object to the subSurface. We can also use a ComplexContainer for
something the player can get inside, such as a large wardrobe:

+ ComplexContainer, Heavy 'large wardrobe' 'large wardrobe'
 subContainer: ComplexComponent, Openable, Booth { }
 subSurface: ComplexComponent, Surface { }
;

++ ContainerDoor '(wardrobe) door' 'wardrobe door'
;

177

This will work, although with one slight oddity: the commands stand on wardrobe,
sit on wardrobe, and lie on wardrobe, will cause the player character to stand, sit
or lie in the wardrobe, not on it.

You may be wondering how the ComplexContainer knows which of its subcomponents
to direct get in and related commands to. The answer is that it uses the method
getNestedRoomDest(action) to determine which of the ComplexContainer's subXXXX

properties has a NestedRoom attached to it, looking first at the subSurface and then
at the subContainer. Most of the time this is fine, and we can just leave
ComplexContainer to do its job. Occasionally, however, we may want to implement
something like a large crate the player can either get inside on get on, in which case
we may need to override getNestedRoomDest() to decide which subcomponent to

use. For example:

+ ComplexContainer 'large crate' 'large crate'
 subContainer: ComplexComponent, Booth { }
 subSurface: ComplexComponent, Platform { }
 getNestedRoomDest(action)
 {
 if(action.ofKind(EnterAction) ||
 gAction.getEnteredVerbPhrase.find(' in'))
 return subContainer;

 return subSurface;
 }
;

The tricky point here is that get in crate and get on crate both trigger the action
board crate; stand in crate and stand on crate both trigger the StandOn action;
and so on for sit in/on and lie in/on, whereas players will obviously expect these
commands to work differently depending whether their command used in or on (or
into or onto). The above example deals with this by checking whether the player’s
command includes a word beginning with ‘in’; if it does, or if an enter command was
used, we select the subContainer; otherwise we select the subSurface. For most
purposes this should work well enough.

Note that we used the method getEnteredVerbPhrase (called on gAction) to get at

the form of the command the player entered. This returns a string in the form 'get in
(dobj)' or 'put (dobj) on (iobj)' (in other words using dobj and iobj as placeholders for
the actual objects, thus focusing on the form of the command rather than the specific
objects it refers to). This string will always be in lower case, and since it is always in
this standard form it is quite easy to use it to determine which actual verb and
preposition the player actually typed. Here we use it to see if the preposition 'in' or
'into' was used; we can test for both at once simply by testing for the presence of the
string ' in', which can only occur if the player type a command like get into crate or
stand in crate.

Note too that we can use a Bed, Platform, Chair or Booth as a ComplexComponent
(Platform and Booth are likely to be the most useful), and this will allow the player

178

character or another actor to get on or in a ComplexContainer, but the library provides
no mechanism to allow an actor to get under or behind something. If you require such
functionality in your game, your best bet is probably to download the ConSpace
extension from the IF-Archive.

11.4 Staging Locations

An actor has to be in one of a Nested Room’s staging locations before s/he can enter
that NestedRoom (for example, the player character needs to be on the bed before
entering the chair when the chair was on the bed). By default the stagingLocations

property of a NestedRoom is simply [location]; we need to be in a NestedRoom’s

location to enter that NestedRoom. As we’ve just seen above this is something we can
override if we need to, and since stagingLocations is a list property, we can define

multiple valid staging locations for any given Nested Room.

Since there may be more than one valid staging location, NestedRoom defines the
chooseStagingLocation() method to select which of them is to be used. This

method simply chooses the actor’s current location if that’s one of the staging
locations, or otherwise returns the defaultStagingLocation().

In turn, the defaultStagingLocation() method simply searches through the list of

stagingLocations until it finds one which is known to be a staging location for this

NestedRoom and then returns that (this means that the order in which staging
locations are listed in the stagingLocations property is significant, since the first one

in the list is likely to be used in the default).

Whether or not any given staging location loc is known to be a staging location for this
NestedRoom is determined by calling the isStagingLocationKnown(loc) method,

which simply returns true by default. Note that this only effects whether loc can be
used in an implicit action. For example, if we changed this method on a chair always
to return nil, and then put the chair on the bed, the command get on chair would get
the response “You can’t do that from here.” (instead of an implicit action to take the
player character onto the bed first). On the other hand, get on chair would still work
when the player character was already in the chair’s staging location (by default,
simply its location).

But there’s another potential pitfall here: if we simply overrode chair’s
isStagingLocationKnown(loc) method to return nil, we’d find that although we

could get on the chair, we wouldn’t be able to get off it again. The reason is that when
an actor leaves a Nested Room s/he’s taken to the location defined in that Nested
Room’s exitDestination property, and that by default exitDestination is defined to

take on the value of defaultStagingLocation(). But if we’ve defined the chair as

having no known staging location, defaultStagingLocation() will return nil, leaving

the player character nowhere to go when leaving the chair. One way round that, if we
really must make the chair’s staging locations unknown, is to override its

179

exitDestination to (location).

Using one NestedRoom as the staging location for another is, in the main, reasonably
straightforward, and unless we’re trying to devise some subtle puzzle, we can
normally just use the standard library behaviour without worrying about it. If,
however, we want to use a Nested Room as a staging location for a TravelConnector,
things can rapidly become more complicated. An example might be where the player
character has to stand on a chair in order to reach a window high up in the wall, in
order to climb out through the window. Part of the problem is that TravelConnector
provides a different interface for staging locations; on a TravelConnector we have to
define the connectorStagingLocation property (not the stagingLocations

property), and that can only hold a single object, not a list. But that's only the
beginning of the potential difficulties. To find out more about the problems of using
NestedRooms as staging locations for TravelConnectors, along with some suggested
solutions, see the article on “Using Nested Rooms as Staging Locations” in the TADS 3
Technical Manual.

11.5 Other Features of Nested Rooms

11.5.1 Nested Rooms and Bulk

It’s worth bearing in mind that actors have bulk and Nested Rooms have a
bulkCapacity; in other words, who or what can fit into a NestedRoom may be limited

by bulk.

By default, the bulk of a Person (the class used for humans NPCs) is 10; the
bulkCapacity of a Chair is 10, and the maxSingleBulk of virtually all objects is 10 by

default. That means that a default TADS 3 chair is only just large enough to hold a
default TADS 3 Person; not even a small object of bulk 1 will fit on the chair alongside
the Person, and even one such small object on the chair will be sufficient to prevent a
Person from sitting there.

Of course we can easily override the bulkCapacity of our chairs to some larger value;

the point is to remember to do so if we need to. For example, a sofa designed to seat
three people would need a bulkCapacity of at least 30 (and perhaps a bit more to

allow room for a few small objects on the sofa besides). Again, if we decide to
increase the default bulk of a Person (because we want more gradations in bulk
between the tiniest objects and a human being), we need to remember not only to
increase the bulkCapacity of Chair but also the maxSingleBulk of NestedRoom

accordingly.

11.5.2 Dropping Things in Nested Rooms

If the player character drops an object while in a Nested Room the game must decide
whether the thing that has just been dropped ends up in the Nested Room or in the

180

Nested Room’s location. Dropping something while on a Platform is likely to result in
the object falling onto the Platform. Dropping something while on a Chair is likely to
result in the object falling into the chair’s enclosing room. This is what the library
enforces in both cases.

Put more formally, BasicChair (from which all the kinds of Nested Room we’ve been

looking at descend) overrides the getDropDestination(obj, path) method (where

obj is the object being dropped; for most objects we don’t need to worry about path),
so that it returns the drop destination of the enclosing location, if there is one, and
self otherwise. The method is overridden again on BasicPlatform (from which

Platform and Booth descend) simply to return self (so that something dropped on a

Platform will fall onto the Platform). If we want to change this behaviour, this is the
method we need to override. For example, on a tiny rug we might define:

tinyRug: Platform 'tiny rug*rugs' 'tiny rug'
 getDropDestination(obj, path) { return inherited BasicChair(obj, path); }
;

Conversely on a very large sofa we might define:

sofa: Chair, Heavy 'huge sofa/settee*sofas' 'huge sofa'
 getDropDestination(obj, path) { return self; }
;

Then anything dropped while the player character is on the tiny rug will fall to the
drop destination of the rug’s location, while anything dropped while the player
character is on the huge sofa will fall onto the sofa.

11.5.3 Enclosed Nested Rooms

By default a Nested Room is open to its immediate surroundings; an actor sitting on a
chair in the lounge is still treated as being in the lounge; a look command will
describe the lounge, and everything in the lounge is reachable from the chair. If,
however, the player character goes inside an openable Booth and closes it, then unless
the Booth is made of some transparent material (glass, fineMesh, or coarseMesh),

s/he will not be able to see out into the enclosing room. In such a case the Nested
Room’s roomName property will be used as the name of the player character's current

location, and the roomDesc property used to provide an internal description of the

NestedRoom for the purposes of a look command. Of course, if the player character
shuts himself inside an opaque NestedRoom with no source of light, he won’t be able
to see anything at all; but we can then override the roomDarkName and roomDarkDesc

properties of the NestedRoom to provide custom versions just as we can for a
DarkRoom. By default, the roomName of a NestedRoom is simply its name.

181

11.6 Special Kinds of Nested Room

There are three more kinds of Nested Room, used for more specialized purpose:
NominalPlatform, Vehicle, and HighNestedRoom.

The purpose of NominalPlatform is to provide somewhere to put an NPC we want

described as “standing in the doorway” or “leaning against a lamp-post”. In most
cases it’s probably easier to obtain the same effect by playing with the NPC’s
specialDesc (or his ActorState’s specialDesc), so we won’t go any further into this

class here; interested readers can look up NominalPlatform in the Library Reference
Manual.

The Vehicle class is rather more interesting. A Vehicle is a kind of Nested Room that

moves around in response to movement commands while the player character is
inside it. We might use it for, say, a bicycle, or a pedal-car, or a go-kart. We’d typically
mix it in with some other kind of NestedRoom class, such as Chair (if it’s the sort of
vehicle we’d sit on, like a bicycle) or perhaps Booth (if it’s the sort of vehicle we’d get
inside). For example, we might define a simple bicycle as:

bike: Chair, Vehicle 'bicycle/bike*bikes bicycles' 'bicycle'
 allowedPostures = [sitting]
;

Note that when an actor is moving around in or on a vehicle, it's the vehicle rather
than the actor that passed as the traveler parameter to the various methods that take
a traveler parameter. Thus, for example, the VehicleBarrier class is defined as:

class VehicleBarrier: TravelBarrier
 canTravelerPass(traveler) { return !traveler.ofKind(Vehicle); }

 /* explain why we can't pass */
 explainTravelBarrier(traveler)
 {
 reportFailure(&cannotGoThatWayInVehicleMsg, traveler);
 }
;

If we wanted, we could define our own VehicleBarrier objects to allow some kind of
vehicles through but not others; e.g.

modify VehicleBarrier
 allowedVehicles = []
 canTravelerPass(traveler)
 {
 if(allowedVehicles.indexOf(traveler))
 return true;

 return inherited(traveler);
 }
;

allowBikeBarrier: VehicleBarrier
 allowedVehicle = [bike, motorBike]
;

182

The allowBikeBarrier would allow an actor through on foot, or when riding the bike

or the motor-bike, but not when in any other vehicle (see section 4.5 above, if you
need reminding what a TravelBarrier is).

The final special kind of NestedRoom is the HighNestedRoom. This is a special kind of

NestedRoom that's notionally too high up to get in or out of (a high shelf or bunk bed,
perhaps). This should normally be mixed in with another NestedRoom class (Bed or

Platform, say), with HighNestedRoom coming first. HighNestedRoom simply provides

customized messages to say that it’s too high up to get in or out of (in its
cannotMoveActorToStagingLocation() and cannotMoveActorOutOf() methods) and

defines stagingLocations as an empty list, so that there’s no way in or out.

Presumably we wouldn’t want a HighNestedRoom to be permanently inaccessible (it
might then just as well be a Distant), so we’d need to find some way of changing the

its stagingLocations; either by making its stagingLocations property a method

that returns non-empty list under certain circumstances, or by dynamically adding and
removing items to and from its stagingLocations elsewhere in our code. For example,
it order to make a high platform that’s reachable only via a ladder and only when that
ladder is in its leaning against platform state we might do something like this:

+ HighNestedRoom, Platform, Fixture 'high shelf*shelves' 'high shelf'
 stagingLocations = (ladder.leaningAgainst == self ? [ladder] : [])
;

Here, we’re assuming that leaningAgainst is a custom property of the ladder object

that we’ve implemented appropriately elsewhere in our code.

11.7 Nested Rooms and OutOfReach

Although the OutOfReach class is logically quite distinct from any Nested Room class,

in practice the two may often work together. As its name at least partly suggest,
OutOfReach is a mix-in class that can put a container, and optionally it contents, out

of reach except under author-defined conditions. OutOfReach defines the following

methods to this end:

● cannotReachFromOutsideMsg(dest) – the message used to say that an actor

can’t reach into this object from the outside to touch dest (if we override this
method it should return a single-quoted string).

● cannotReachFromInsideMsg(dest) – the message used to say that an actor

can’t reach out of this object from the inside (if we override this method it
should return a single-quoted string).

● canObjReachContents(obj) – returns true if the object obj (normally an actor)

can reach the contents of the OutOfReach object from the outside. By default
this just returns nil.

183

● canObjReachSelf(obj) – returns true if the object obj (normally an actor) can

reach the OutOfReach object itself from the outside. By default this returns the
value of canObjReachContents(obj).

● canReachFromInside(obj, dest) – returns true if the object dest outside the

OutOfReach object can be reached by the object obj (typically an actor) while
obj is inside the OutOfReach object. By default this simply returns nil.

● canReachSelfFromInside(obj, dest) – returns true if an obj (typically an

actor) can reach the OutOfReach object from inside it. By default this returns
the value of canReachFromInside(obj, self).

● tryImplicitRemoveObstructor(sense, obj) – by default this returns nil to

mean that we can’t do anything about an object’s being out of reach. In some
cases we could override this to attempt an implicit action (e.g. getting out of
the OutOfReach object to reach the object that’s outside it).

From this set of method definitions, three things should be apparent:

1. An OutOfReach won’t do anything terribly interesting unless we override at

least some of these methods.

2. The OutOfReach class must be mixed in with some kind of Thing-derived class.

3. Some of the OutOfReach methods (those concerned with try to reach outside

from within) are only meaningful if OutOfReach is mixed in with a NestedRoom

class (otherwise, there could be no actor inside).

We saw how a HighNestedRoom could be used to implement a high shelf that can only

be reached via a ladder; but that was a high shelf the player could actually climb onto
via the ladder. A more common kind of high shelf might be one that’s too small to
climb on to, but supports some objects that the player character wants to get hold of.
This is one way in which we’d use an OutOfReach in conjunction with a NestedRoom,

since we’d probably arrange for there to be some kind of NestedRoom (a chair say)

that the player character could stand on in order to reach the high shelf:

+ OutOfReach, Surface, Fixture 'high shelf*shelves' 'high shelf'
 canObjReachContents(obj)
 {
 return obj.isIn(woodenChair);
 }
;

++ torch: Flashlight 'torch/flashlight*torches' 'flashlight'
;

+ woodenChair: Chair 'wooden chair' 'wooden chair'
;

184

In this example, there’s a flashlight (which the player presumably needs in order to
visit some dark room or other) resting on the high shelf. In order to reach either the
high shelf or anything on it (such as the flashlight) the player character needs to
stand on the wooden chair.

As mentioned in passing above, if an actor is in a NestedRoom, then unless it’s a
closed Booth, it’s assumed that the actor can reach anything in the room. This may
sometimes seem a bit unrealistic, especially if the room is much bigger than a broom
closet. If I’m sitting on a chair in the study, I’m unlikely to be able to take a book off
the bookcase unless my chair just happens to be right next to the right section of
shelf. If I’m lying on my bed in a reasonably large bedroom I’m unlikely to be able to
reach something that’s lying on the dressing table set against the far wall.

Combining OutOfReach with a NestedRoom allows us to model this situation. At a first
approximation we might write:

+ bed: OutOfReach, Bed, Heavy 'bed*beds' 'bed'
 canReachSelfFromInside(obj) { return true; }
 canObjReachContents(obj) { return true; }
;

In this case we don’t want to prevent anyone from outside the bed touching either the
bed or its contents, and someone on the bed can obviously reach the bed itself, so we
override two of the methods accordingly. The result is that the bed now behaves much
like an ordinary TADS 3 Bed, except that an actor on the bed can’t reach anything
outside the bed. If we wanted to be more discriminating we could override
canReachFromInside(obj, dest) to allow access to a restricted range of objects.

A further sophistication would be to automate the process of getting off the bed if the
player tries to take something outside the bed from inside the bed. Rather than being
told “You hat is too far away” it would make for smoother game player to remove the
player from the bed (with “(first getting off the bed”)) and then allow the player to
take the hat. We can achieve that by overriding tryImplicitRemoveObstructor() to

attempt an implicit action to get the actor off the bed:

+ bed: OutOfReach, Bed, Heavy 'bed*beds' 'bed'
 canReachSelfFromInside(obj) { return true; }
 canObjReachContents(obj) { return true; }
 tryImplicitRemoveObstructor(sense, obj)
 {
 return tryRemovingFromNested();
 }
;

The examples of OutOfReach we have seen so far may suggest that its only use is
with NestedRooms or container-like objects. In fact, OutOfReach can be used in many
other ways as well, whenever we might want an object to be touchable under some
conditions but not others.

For example, suppose we have a landmark like a high tower that’s visible in many

185

locations but touchable only in one. We could implement a single tower object in the
location where it’s meant to reside and then make it visible elsewhere by adding a
DistanceConnector, but if the tower is the only object we want to be visible from
further away this may give us a lot of unnecessary work. Or we could use one object
to represent the tower in the place where the tower actually is, and a Distant object to
represent the tower as seen from remote locations, perhaps remembering to use
getFacets on both objects to tells the parser that they actually refer to the same
physical object in the game world. But if we use OutOfReach, we can use a single
object to represent the tower:

tower: OutOfReach, MultiLoc, Enterable -> towerDoor 'tall tower' 'tower'
 desc()
 {

if(me.isIn(outsideTower))
 "The tower stands right before you, stretching up way above your head.

 ";
else
 "The tower stands in the distance, pointing up to the sky. ";

 }

 canObjReachContentsObj(obj) { return obj.isIn(outsideTower); }
;

This will make the tower behave like a Distant object unless the player is in the
outsideTower room.

Despite the name of the class, we’re not restricted to using OutOfReach for situations
where an object may be too far away; we can use it for any situation in which an
object might become untouchable. For example, suppose we have an iron poker which
we can put in a fire, which gets hotter the longer we leave it there, and which
eventually becomes too hot to touch. Rather than trying to trap every action that
involves touching the poker, we can simply make it an OutOfReach:

poker: OutOfReach, Thing 'iron poker' 'poker'
 "It's <<isRedHot ? 'glowing red hot' : 'just an iron poker'>>. "
 isRedHot = nil
 canObjReachContentsObj(obj) { return isRedHot == nil; }
 cannotReachFromOutsideMsg(dest) { return 'It\'s too hot to touch!'; }
;

Another problem we can solve with OutOfReach is the case of an NPC who becomes
dead or comatose. We might put the NPC into an appropriate HermitActorState when
this happens, so we don’t get silly responses when the player tries to talk to him, but
we may still get inappropriate responses to trying to kiss, attack, or take the corpse
(and various other actions of this type), and making sure we’ve trapped all such
actions can be tricky. Once again we can use OutOfReach to simplify the task:

bob: OutOfReach, Person 'bob/man*men' 'Bob'
 isHim = true
 isProperName = true
 canObjReachContentsObj(obj) { return curState != bobDeadState; }
 cannotReachFromOutsideMsg(dest) { return 'You don\'t like to touch

186

 a corpse!'; }
;

+ bobDeadState: HermitActorState
 noResponse = "He\'s dead; he can\'t hear you. "
 specialDesc = "Bob lies dead on the ground. "
 stateDesc = "Bob is dead. "
;

Some of these examples use classes like MultiLoc, Person and HermitActorState we
haven’t dealt with yet, so don’t worry if you don’t fully understand them at this point.
The point to note is that with a bit of imagination OutOfReach can be used in a
number of different ways to solve a variety of problems.

For further details of OutOfReach (though we’ve covered most of them here) look up
OutOfReach in the Library Reference Manual. For more details of NestedRooms (and
there is more to see), look up NestedRoom and its subclasses (as well as the
BasicLocation superclass) in the LibraryReferenceManual.

Exercise 18: Create a one-room game consisting of the Player Character's bedsit.
This will contain a bed (of course) under which is a drawer containing a pillow. There’s
also a desk, a swivel chair (too unstable to stand on) and an armchair (too heavy to
move), as well as a large sofa that’s large enough to lie on. Above the desk is a high
bookshelf on which is a solitary book. To reach the shelf or the book the player
character must stand on the desk. On another wall is a high bunk bed which can only
be reached via a ladder that’s currently stored under the desk. Beneath the bunk bed
is a wooden bench seat, attached to the wall; there’s insufficient headroom under the
bunk bed to stand on the bench, and insufficient headroom above it to stand on the
bunk. Also on the floor under the bunk is a sleeping cat. Finally, there’s an openable
wardrobe that’s large enough to walk into; inside the wardrobe is a hanging rail on
which is a solitary coat-hanger. If you’re feeling really adventurous make it so that in
general an actor inside a NestedRoom can’t reach outside it (there will need to be
exceptions to this), and will automatically be taken out of the NestedRoom if s/he
tries. Once you’ve got as far as you want to with this, compare your version with the
bedsit.t sample game.

187

12 Locks and Other Gadgets

12.1 Locks and Keys

We’ve come across several things than can be open and closed: doors, some
containers, and some booths. When we’re writing IF we often want to make such
things lockable too.

12.1.1 Lockable

The simplest kind of lock in TADS is provided by the Lockable class. To use this class

we simply add Lockable to the front of the class list, so to make a lockable door we’d
use a class list of Lockable, Door; a lockable booth (such as a lockable wardrobe)

would use Lockable, Openable, Booth; and a lockable container would be

Lockable, OpenableContainer, except that the library already provides a

LockableContainer class that combines these classes. Since Lockable is a mix-in

class, it’s generally a good idea to put it first in the class list. More significantly, we
don’t need a key to lock or unlock something that’s of the Lockable class; the kind of

lock envisaged is a bolt or paddle; all that’s needed to lock or unlock a Lockable is to

issue a lock or unlock command. Lockable is therefore probably of limited use, since

making something Lockable doesn’t provide any real obstacle. The Lockable class is

probably most useful for implementing one side of a door, either something like a
bathroom door that can only be locked or unlocked from the inside, or something like
a front door that needs a key to lock and unlock from the outside but which can be
locked or unlocked with a bolt or paddle on the inside.

12.1.2 KeyedLockable

The more common kind of lock in Interactive Fiction is one that requires a key. For
this TADS 3 provided the KeyedLockable class. Like Lockable, this is a mix-in class

that should come first in any class list, hence KeyedLockable, Door or

KeyedLockable, Openable, Booth. TADS 3 provides a KeyedContainer class that

already combined KeyedLockable, Openable, Container. Note that when defining a

pair of Doors (i.e. the two game objects that represent the two sides of the same
physical door) it’s perfectly legal to make one side a Lockable, Door and the other

side a KeyedLockable, Door.

A keyed lockable obviously needs a key, and to make something a key we simply
define it to be of the Key class. To define which keys unlock which locks, we list the

keys that work with a particular KeyedLockable in that KeyedLockable’s keyList

property. So, for example, if the front door can be locked and unlocked with the brass
key, we’d define:

188

+ frontDoor: KeyedLockable, Door 'front door*doors' 'front door'
 keyList = [brassKey]
;

Since keyList is a list property, it can contain more than one key. So, for example, if

there was also a skeleton key in the game that opened a wide variety of doors we
could define:

+ frontDoor: KeyedLockable, Door 'front door*doors' 'front door'
 keyList = [brassKey, skeletonKey]
;

It’s thus perfectly possible to make the same key work on a number of different locks,
and for a number of different keys to work on the same lock.

Once the player character has successfully used a key on a lock once, the game
remembers that the player character knows that this key works on this lock.
Thereafter (unless we override this behaviour) the process of unlocking and locking
that particular lock will be automated through implicit actions, provided the player
character still has the appropriate key. For example, if the front door is locked, but the
player character already knows that the brass key unlocks it, then issuing a command
to go through the door will cause the door to be implicitly unlocked and opened, like
this:

>n
(first unlocking the front door with the brass key, then opening it)

The game keeps track of which keys are known to fit which locks in the lockable
objects knownKeyList property. So, if there are keys the player character should start

the game already knowing about, these can be defined on the appropriate lock’s
knownKeyList. For example, the player character presumably starts the game

knowing which key unlocks his or her own front door, so if it’s the player character’s
own front door we’re implementing we could do something like this:

+ frontDoor: KeyedLockable, Door 'front door*doors' 'front door'
 keyList = [brassKey, skeletonKey]
 knownKeyList = [brassKey]
;

This is perhaps as much as we need to know to make locks and keys work reasonably
well in our game, but there are other properties and methods we can tweak to
customize their behaviour. The following are all defined on Lockable, and are also

applicable to LockableWithKey (where any of them behave differently on

LockableWithKey, this will be noted below).

● autoLockOnOpen – if this is true, then an open command will trigger an

189

implicit unlock command if we’re locked. By default this is set to the value of
lockStatusObvious (for which, see below).

● initiallyLocked – if this is true (the default) then this object starts the game

locked. Note that if we’re defining a pair of linked objects (such as the two sides
of a door) this should be defined on the master object (the one that doesn’t use
-> in its template).

● lockedDesc – an adjective describing this item as either locked or unlocked;

the library defaults are simply ‘locked’ and ‘unlocked’; if the property is
overridden it should be with a method that returns one single-quoted string
when the item is locked and another when it’s unlocked.

● lockStatusObvious – this should be true for an item whose locked/unlocked

status can be seen from visual inspection, e.g. because the lock is operated by
a bolt or paddle the position of which can be seen. The default value is true.

● lockStatusReportable – although this is similar to lockStatusObvious, it is

used for a slightly different purpose. By default the library appends “It’s locked”
or "It’s unlocked" to the description of any Lockable object. If we find this
aesthetically displeasing we can set this property to nil to suppress such
reports. The library default is for this property to be true unless the item is
open, in which case reporting that it’s unlocked seems redundant. Note that
both lockStatusObvious and lockStatusReportable have to be true for the

“It’s locked” messages to appear.

● isLocked() - use this method to test whether or not the item is locked (it

returns true if it is locked and nil otherwise)

● makeLocked(stat) – use this method to lock or unlock the item under program

control; if stat is true the item is locked, otherwise it’s unlocked.

LockableWithKey additionally defines (or overrides) the following:

● keyList – as we’ve already seen, this contains the list of keys that can lock or

unlock this item.

● knownKeyList – as we’ve also already seem, this contains the list of keys that

the player character knows can lock or unlock this item.

● lockStatusObvious – this has the same meaning as on Lockable, but on

LockableWithKey the default value is nil, since we can’t normally tell just by

visual inspection whether a keyed lock is currently locked or unlocked.

● rememberKnownKeys – if this is true (the default), then each time the player

successfully uses a key to lock or unlock this item, that key will be added to the
item’s knownKeyList.

● isKeyKnown(key) – returns true if the player character knows that key fits this

lock. By default this method returns true if key is in the knownKeyList.

190

● keyFitsLock(key) – returns true if key fits this lock. By default this returns

true if key is in the keyList, but it’s conceivable that we might occasionally want
to override this to apply some other criterion.

● keyIsPlausible(key) – returns true if key looks as if it might fit this lock. For

example, if the lock is a Yale lock, we know that only a Yale key could plausibly
fit it. Similarly, if it’s a lock operated by a card key, then only a card key could
plausibly lock or unlock this item. Similarly, some keys might be obviously too
large or too small for some locks; a large iron key that might unlock a church
door is never going to open a small tin box any more than the tiny silver key
that might unlock the small tin box could ever unlock the church door. By
default this routine simply returns true, but we could override it if we wished to
be more discriminating. The point of the routine is to help the parser decide
which key the player means in cases of ambiguity, so that, for example, if the
method has been properly set up and the player types unlock small tin box
with key the parser will select the small silver key rather than the large iron
key without bothering with player with a disambiguation question, since it’s
obvious which key the player must mean.

12.1.3 Keyring

As noted above, anything we want to be usable as a key should be of the Key class. If

we like, we can also define or or more objects of the Keyring class. A Keyring, as its

name suggests, is a special kind of object for holding keys. If an actor is holding a
Keyring when s/he takes a Key, that Key will automatically be put on the Keyring.

Keys on a Keyring can be used to lock and unlock things without removing them from
the Keyring, and if an actor in possession of a keyring executes an unlock command
without specifying what key to use, we will automatically test each key on the ring to
find the one that works.

It may be that a keyring that’s suitable for conventional keys wouldn’t be the natural
place to put card-keys or the like. By default, a Keyring will take anything that’s a

Key, but if there are different kinds of Keys in our game, and we don’t want a
particular Keyring to take all of them, we can override that Keyring’s isMyKey(key)

method to return true only for those keys we want that Keyring to hold.

12.1.4 IndirectLockable

In addition to items that can be locked and unlocked with a simple paddle mechanism
or with some sort of key there are doors and containers that use some other
mechanism, such as a safe door that uses a combination lock, or a door operated by a
button or lever. For such situations the library defines the class IndirectLockable.

This is used in the same way as Lockable, and like Lockable it is a mix-in class that

should generally appear first in the class list of any object definition. When defining
the two sides of a door it is again perfectly legal to make one side IndirectLockable

191

and the other either Lockable or LockableWithKey. The distinguishing feature of an

IndirectLockable is that the lock and unlock commands won’t work on it, since the

player has to find some other means (such as operating the combination lock,
pressing a button or pulling a lever) to lock or unlock the item.

IndirectLockable inherits from Lockable and therefore inherits all the same methods

and properties. In addition it defines or overrides:

● cannotLockMsg – a message explaining that the player cannot lock this item

directly. To override this (which we’ll frequently want to do) define this property
as a single-quoted string.

● cannotUnlockMsg – a message explaining that the player cannot unlock this

item directly. To override this (which we’ll also frequently want to do) define this
property as a single-quoted string.

● lockStatusObvious – this means the same as on Lockable, but the default is

nil.

12.2 Control Gadgets

As we’ve just seen, if we define something (typically a door or container) to be an
IndirectLockable we need to provide some kind of external mechanism to lock or

unlock it. For this purpose we might use one of the control gadget classes provided by
the library, which include Button, Lever, OnOffSwitch, Settable and Dial. Of course

we can also use these classes to control any other kind of contraption we like.

12.2.1 Buttons, Levers and Switches

The simplest of these classes is probably Button. By default a Button simply goes

click when it’s pushed; to make it do anything more interesting we need to override its
actionDobjPush() method, for example:

study: Room 'Study'
 "There seems to be some sort of door in the oak-panelling on the north
 wall. Next to this is large brown button. "
 north = panelDoor
;

+ panelDoor: IndirectLockable, Door 'door*doors' 'door'
 cannotLockMsg = 'Maybe that's what's the brown button is for. '
 cannotUnlockMsg = (cannotLockMsg)
;

+ Button, Fixture 'large brown button*buttons' 'brown button'
 dobjFor(Push)
 {
 action()
 {
 "A loud <i>click</i> comes from the door in the panelling. ";
 panelDoor.makeLocked(!panelDoor.isLocked);
 }

192

 }
;

A Lever is slightly more complicated in that it has two states, pulled or pushed

(determined by the value of its isPulled property). When isPulled is true the player

has to push the lever to move it; when isPulled is nil the player must pull the lever

to move it. The player can also simply move the lever to toggle between one state
and the other. Any of these actions uses the makePulled(pulled) method to switch

states, and this is probably the most convenient method to override to make the lever
actually do anything. For example, suppose instead of an indirectly lockable door in
the wood panelling, we have a hidden door that only becomes apparent when it is
operated by a concealed lever. We could do this with:

study: Room 'Study'
 "Oak panelling covers the walls. A matching oak desk stands in the middle
 of the room. "
 north = panelDoor
;

+ panelDoor: HiddenDoor 'secret panel door*doors' 'secret door'
;

+ desk: ComplexContainer, Heavy 'oak wooden desk*desks*furniture' 'oak desk'
 subSurface: ComplexComponent, Surface { }
 subUnderside: ComplexComponent, Underside
 {
 dobjFor(LookUnder)
 {
 action()
 {
 if(!hiddenLever.discovered)
 "You find a small concealed lever fixed to the underside of the
 desk. ";
 inherited;
 }
 }
 }
;

++ hiddenLever: Lever, Component 'hidden concealed small lever' 'small lever'
 subLocation = &subUnderside
 makePulled(pulled)
 {
 inherited(pulled);
 panelDoor.makeOpen(pulled);
 if(pulled)
 "A secret door slides open in the north wall. ";
 else
 "The secret door in the panelling slides shut. ";
 }
;

193

A variation on the Lever is the SpringLever, which is a spring-lever that returns to its

starting position when pulled (making it functionally equivalent to a Button). Although

SpringLever inherits isPulled and makePulled() from Lever, neither is relevant to

its operation, and to make a SpringLever do anything useful we need to override is
actionDobjPull() method. For example, to implement the previous lever under the

desk as a spring lever we might do this:

++ hiddenLever: SpringLever, Component 'hidden concealed small lever*levers'
 'small lever'
 subLocation = &subUnderside
 dobjFor(Pull)
 {
 action()
 {
 panelDoor.makeOpen(!panelDoor.isOpen);
 if(panelDoor.isOpen)
 "A secret door slides open in the north wall. ";
 else
 "The secret door in the panelling slides shut. ";
 }
 }
;

A slightly different kind of control is the OnOffControl, which, as its name suggests,

is a control the player can turn on or turn off (or switch on and off). An
OnOffControl has an isOn property that determines whether it’s on or off, and an

onDesc property which returns 'on' or 'off' appropriately. Switching an OnOffControl

between its on and off states is handled in its makeOn(val) method, which is probably

the most convenient method to override to make the OnOffControl do something

interesting.

For example, suppose we wanted to implement a light switch that controls a light bulb
in some other part of the room. We could define:

+ OnOffControl, Fixture 'light switch*switches' 'light switch'
 makeOn(val)
 {
 inherited(val);
 lightBulb.makeLit(val);
 "The light bulb <<val ? 'comes on' : 'goes out'>>. ";
 }
;

A Switch is identical to an OnOffControl except that the player can additionally use

the command flip and switch to toggle a Switch between its on and off states (i.e.
isOn being true or nil). A Flashlight, which we have already met, is a combination of

the Switch and LightSource classes, suitably linked so that its isOn and isLit

properties remain in sync.

194

12.2.2 Controls With Multiple Settings

The various types of control gadgets we have met so far have at most two states, but
there are various kinds of control (e.g. the slider on a thermostat or a dial on a radio)
that can have multiple settings. The ancestor class for all such multiple-setting classes
in TADS 3 is the Settable class, which is a possible class to use for slider-like

controls.

The principal properties and methods of the Settable class are:

● curSetting – the item’s current setting, which can be any (single-quoted)

string value. This is updated as the item is set to a different setting.

● canonicalizeSetting(val) – by default this just returns val. It could be used,

for example, to convert val to lower case before testing whether or not it’s a
valid setting for this item, thereby making commands for setting this item not
case-sensitive.

● isValidSetting(val) – by default this also just returns true, but we’d

normally need to test it to ensure that any proposed new setting was indeed
valid. Note that when this is called val has already been converted to canonical
form by canonicalizeSetting().

● makeSetting(val) – this is the method that changes the setting, by changing

curSetting to val. Note that when this called val has already been converted to

canonical form by canonicalizeSetting(). This is probably the most

convenient method to override if we want changing the setting of this item to
have any interesting effect.

Two further properties of possible interest are okaySetToMsgProp and

setToInvalidMsgProp which return the property pointer or (single-quoted) strings to

be used either to acknowledge the change of setting or to complain that the proposed
new setting is invalid.

In most cases the settings we can set a Settable to will either be a range of numbers

or a finite set of strings. In that case the simplest thing to do if we’re implementing a
Settable that isn’t a dial (it’s a slider, say), is to “borrow” the canonicalizeSetting()

and isValidSetting() methods from either the NumberedDial or LabeledDial class

(which we’ll meet shortly below). Or we might simply use one of these classes for our
slider or whatever without worrying that the player can also use commands like turn
slider to 10 or turn slider to amber to set the slider. To “borrow” these methods we
could define a numbered slider like this:

+ Settable, Component 'slider*sliders' 'slider'
 "It can be set to any number between <<minSetting>> and <<maxSetting>>.
 It's currently set to <<curSetting>>. "
 minSetting = 0
 maxSetting = 70
 curSetting = '60'
 canonicalizeSetting(val) { return delegated NumberedDial(val); }

195

 isValidSetting(val) { return delegated NumberedDial(val); }
 makeSetting(val)
 {
 inherited(val);
 val = toInteger(val);
 if(val < 40)
 "Gosh it's becoming cold in here! ";
 if(val > 70)
 "It's starting to become rather too warm! ";
 }
;

Likewise for a labeled slider we could define:

+ Settable, Component 'slider*sliders' 'slider'
 "The slider can be set to any of
 <<stringLister.showSimpleList(validSettings)>>. It's currently set to
 <<curSetting>>. "
 validSettings = ['red', 'yellow', 'blue']
 canonicalizeSetting(val) { return delegated LabeledDial(val); }
 isValidSetting(val) { return delegated LabeledDial(val); }
 makeSetting(val)
 {
 inherited(val);
 if(val == 'red')
 "A klaxon starts to sound. ";
 }
;

This should become a bit clearer when we look at NumberedDial and LabeledDial
below, and in any case it might be easier just to use NumberedDial or LabeledDial

and override verifyDobjTurnTo() if we want to disallow the turn to command on our

slider.

Note that by default a Settable can be set only with commands like set slider to

whatever. If our Settable is a slider, the player might reasonably try to move slider
to 10 or push slider to green. The easiest way to cater for that is simply to modify
the grammar of the SetTo command:

modify VerbRule(SetTo)
 ('set' | 'slide' | 'move' | 'push' | 'pull') singleDobj 'to' singleLiteral
 :
;

A specializiation of Settable is the Dial class, which simply allows turn dial to x as

well as set dial to x. It’s unlikely that we’ll ever want to use the raw Dial class in a
game; we’re much more likely to use one of its more fully-features subclasses,
NumberedDial or LabeledDial.

A NumberedDial is a dial that can be set to any one of a range of integer settings. The

range of settings is specified by the minSetting and maxSetting properties. The one

tricky thing to look out for is that the minSetting and maxSetting properties must be

specified as numbers while the curSetting property is a (single-quoted) string.

196

A typical use for a NumberedDial might be as a combination lock. For example:

++ NumberedDial, Component 'black dial*dials' 'black dial'
 "The dial can be turned to any number from 0 to 99; it's currently at
 <<curSetting>>. "
 minSetting = 0
 maxSetting = 99
 combination = [21, 34, 45]
 storedSettings = []
 makeSetting(val)
 {
 inherited(val);
 storedSettings += toInteger(val);
 if(storedSettings.length > 3)
 storedSettings = storedSettings.sublist(storedSettings.length – 2);

 if(storedSettings == combination)
 {
 location.makeLocked(nil);
 "As you turn the dial to <<val>>, a quiet click comes from
 <<location.theName>>. ";
 }
 else
 location.makeLocked(true);
 }
;

This assumes, of course, that this NumberedDial is attached to something (like a safe

or strongbox) that can be locked or unlocked.

A LabeledDial can be turned to any one of a number of predefined settings. The

allowable settings are listed in its validSettings property. However we define these

strings, and whatever the player types, both the setting proposed by the player and
the settings in the validSettings property are converted to upper case before

they’re compared, so that a LabeledDial is not case-sensitive.

A LabeledDial might thus typically be defined along the following lines:

+ LabeledDial, Component 'red dial*dials' 'red dial'
 "The dial can be turned to any of the settings
 <<stringLister.showSimpleList(validSettings)>>. It's currently set to
 <<curSetting>>. "
 validSettings = ['OFF', 'SAFE', 'OVERDRIVE', 'REVERSE']
 makeSetting(val)
 {
 inherited(val);
 switch(val)
 {
 case 'OFF':
 "The widget-mangler falls silent. "; break;
 case 'OVERDRIVE':
 "The widget-mangler starts vibrating alarmingly. ";
 /* other interesting stuff */
 }
 }
;

197

Note the use of stringLister.showSimpleList(validSettings) in the description.

This will take the contents of the validSettings property and display it as properly
formatted list, like “OFF, SAFE, OVERDRIVE and REVERSE”. We could just write out
this list by hand, of course, and in a dial with few settings it’s probably simpler to do
so; but if our dial has many settings using the stringLister to list them not only saves
us the bother of typing them twice, but it ensures that the description does in fact
correspond to the validSettings property, which both makes it more typo-proof and

makes it easier to keep the two in sync if we start adding to and subtracting from the
list of validSettings.

Exercise 19: Try implementing the following game. The player character is outside
the home of a blackmailer. Knowing him to be out, the player wants to burgle his
house to recover an incriminating letter. The player character carries a small black
case holding a skeleton key and a key-ring, and also has a small flashlight (if you
want to be really sophisticated you can try to see whether the player refers to it as a
‘flashlight’ or a ‘torch’ and then use American or British English from then on
accordingly). The front door can be unlocked either with the skeleton key or with the
key hidden under a nearby flowerpot. Once inside the hall the player character must
disable the burglar alarm before going any further into the house. The alarm is
controlled by a numeric keypad inside a box by the front door. The correct
combination is the date (year) that was written over the outside of the front door. To
unlock the box containing the keypad requires either the skeleton key or a small silver
key that falls to the ground when the player character pulls a peg on the nearby hat-
stand. Once the alarm has been turned off, the player character can go into the study.
On one wall of the study is a panel than needs to be opened to gain access to the
safe. In the study is a desk on which is a small wooden box. On the side of the box is
a slider, which can be set to the names of four different composers; the box is
unlocked when the slider is used to spell out the word OPEN from the initial letters of
these composers. Inside the box is a key that can be unused to unlock the drawer of
the desk. This contains a notebook in which is written the cryptic message
“Advertising is safe” together with the combination of the safe. There’s a TV in the
study which can be turned on and off with a switch, and changed to different channels
with a dial. Turning it on and switching it to the advertising channel will open the
panel in the wall. The player character can then go through the open panel into a
small cubby-hole containing the safe. From inside the cubby-hole the panel can be
opened and closed by means of a lever. The safe has dial which must be turned to
each of the numbers in the combination for the safe to be unlocked. Once the safe is
unlocked it can be opened and the letter retrieved. The game is won when the player
character walks away from the house carrying the letter.

Once you’ve got as far as you want to implementing or thinking about how to
implement the game, take a look at the sample game LockGadget.t.

198

13 More About Actions

13.1 Message Properties

As we’ve seen, it’s possible to use macros like illogical('You can't do that. ')

in verify routines, or reportFailure('You see no reason to strip off here. ')

in check routines to stop an action and display a message explaining why. We can also
use macros like mainReport('You pick up the vase. ') and

defaultReport('Taken. ') to report the carrying out of actions. If, however, we look

at the way such actions are defined in the library, we won’t see them defined with
string arguments like this; instead we’ll see them used with property pointers, and
then sometimes with additional arguments, like illogical(¬ASurfaceMsg), or

reportFailure(&actorCannotSeeMsg, gIobj, self), or

defaultReport(&okayTakeMsg).

That property pointers are used here is a clue that what is happening: the messages
displayed by these macros are generated by the methods and properties of some
object. Where there’s more than one argument, the additional arguments are
arguments passed to this method.

In action processing the message object used for this purpose is defined in
gActor.getActionMessageObj(). Thus, for example, when we see a macro like

illogical(¬ASurfaceMsg);

Then the message that this produces is the single-quoted string returned from:

gActor.getActionMessageObj().notASurfaceMsg;

When the current actor is the player character, then unless we change the library’s
default behaviour gActor.getActionMessageObj() will be the object

playerActionMessages, defined in the file msg_neu.t. This means that the message

displayed, for example, by

reportFailure(&actorCannotSeeMsg, gIobj, self);

Will be the single-quoted string returned from:

playerActionMessages.actorCannotSeeMsg(gIobj, self);

The main reason the library does it this way is to isolate the language-dependent
parts of the library into a couple of files. If someone wants to translate the library into
another language, all they need to do is to translate the messages in these two files.
By using message properties rather than actual strings throughout, the main part of
the library remains language-independent.

199

When we’re writing a game in a particular language we don’t generally need to worry
about this too much; we can simply continue to use single-quoted strings in our
illogical(), reportFailure() and mainReport() macros, and all will be well. On

the other hand, it’s useful to know how the library messages work if we want to
change them.

If we want to change a library message globally, then one way to do it is to modify the
playerActionMessages object. For example, to change the default message for

putting something on something that’s not a Surface we could do this:

modify playerActionMessages
 notASurfaceMsg = '{You/he} can\'t put anything on {the iobj/him}. '
;

If we want to change several default library messages in our game, this is a perfectly
good way to go about it; we could either read through the msg_neu.t file noting the
messages we wanted to override, or search through it to hunt for particular message
we want to change when they come up in the course of testing our game.

When we want to change the messages used on individual objects or custom classes
we need a different approach. Of course we could always do this:

+ Enterable ->frontDoor 'large house*houses' 'large house'
 "It's a large, three-storey house. "
 iobjFor(PutOn)
 {
 verify() { illogical('You can't reach the roof from here! '); }
 }
;

But this becomes a little cumbersome when we want to override several messages on
several objects. After all we’re not changing the logic here, just the message that’s
displayed, and it seems a little like overkill to have to rewrite the entire verify()
method just to change the message it displays.

In fact, we don’t need to. In order to allow for this kind of situation the library first
looks at the objects involved in a command to see whether any of them define the
property in question before going to the gActor.getMessageObj() property. So we

could, almost, get the effect we wanted simply by defining:

+ Enterable ->frontDoor 'large three-storey house*houses' 'large house'
 "It's a large, three-storey house. "
 notASurfaceMsg = 'You can't reach the roof from here! ' // not quite right
;

The slight problem with this is that the library looks for the appropriate message
property on all the objects involved in an action, so our custom message would also
be used if the large house were the direct object of a put on command. This could
result in our getting a transcript like this:

200

>put large house on small tray
You can’t reach the roof from here!

In this context our custom message looks quite inappropriate (although we might not
actually get it in this particular case, since the action would presumably fail when
trying to implicitly take the house, but the principle remains the same). What we need
is a means to tell the library to use our custom message only when the large house is
the indirect object of a put on action, and not the direct object. We can do that by
using the iobjMsg() macro. We can similarly use the dobjMsg() macro to indicate

that we only want our custom message to be used when the large house is the direct
object of the command:

+ Enterable ->frontDoor 'large three-storey house*houses' 'large house'
 "It's a large, three-storey house. "
 notASurfaceMsg = iobjMsg('You can't reach the roof from here! ')
 cannotCleanMsg = dobjMsg('You hardly have time to clean the entire house! ')
 cannotEatMsg = 'Your appetite isn't that big! '
;

This ensures that we don’t get inappropriate responses to put house on tray or
clean boots with house.

Where an action can only have one object (as with eat house) this isn’t an issue, so
we don’t need to use the dobjMsg() macro. Where a message can relate to an action

that takes two objects (for example there’s both a Clean action and a CleanWith
action, and both use cannotCleanMsg) it’s important always to use the dobjMsg() or

iobjMsg() to ensure that we only get our custom message under the appropriate

circumstances.

There’s actually three different kinds of value you can assign to a message property
on an object to be used instead of the same message property on
playerActionMessages:

● You can define it to be a single-quoted string (or a property containing a single-
quoted string), as in the examples above. Then that single-quoted string will be
used in place of whatever the message property on playerActionMessages

would have been.

● You can define it to be another message property; then that message property
will be used on playerActionMessages instead of the one you are overriding.

● You can define it to be nil, in which case the original message property of

playerActionMessages will be used. There’s no point in making your custom

message property unconditionally nil (you may as well not define it at all), but
it can be a method that returns nil under certain circumstances; the dobjMsg()

and iobjMsg() use this technique to ensure that the playerActionMessages

property is used if they’re not called on the direct or indirect object respectively.

201

For more details of how this works, look up the MessageResult class in the Library

Reference Manual and read the comments in the code for the resolveMessageText()

method. From this you may note one further point: some properties of
playerActionMessages are simple properties taking no arguments; some are

methods with one or more arguments. When defining your message override on an
object (or class) you can either define it without any arguments (even if it’s defined
with arguments on playerActionMessages) or with the same arguments as the

method has on playerActionMessages. For example, playerActionMessages defines

a cannotTasteMsg(obj) method. If you want to define your own cannotTasteMsg on

a particular object you can either do it as a simple property:

cannotTasteMsg = 'You don\'t want to put {that dobj/him} in your mouth! '

Or as a method with the same arguments as the method on playerActionMessages:

cannotTasteMsg(obj)
{
 gMessageParams(obj);
 return '{You/he} really do{es}n\'t want to try tasting {that obj/him}! ';
}

There’s no need to use the second form unless you actually want to use the
parameters in your method.

Defining message properties in this way saves having to override verify, check and
action methods just to change a message, but the catch is we have to know which
message property to override. It’s possible to figure it out from the Library Reference
Manual, but all too often, by the time we’ve done that we might as well have
overridden a method! To find the appropriate message property it’s quicker and easier
to look it up in the quick reference chart that’s available from tads.org, at
http://www.tads.org/howto/ActionMessages.zip. The same quick-reference chart is
also provided as an appendix to Getting Started in TADS 3.

For more information on library message properties, read the “Library Messages”
section at the end of the article on “Action Results” in the TADS 3 Technical Manual.
You may also find it helpful to read the preceding section (“Action”) in the same
article. For a parallel account of the material just covered here, you could read the
“Messages” section in Chapter 4 of Getting Started in TADS 3.

13.2 Stopping Actions

We have already encountered the exit macro, which can be used to stop an action in

its tracks (typically in a check() routine, but as we shall see, it can be used elsewhere
as well). We should now take a slightly closer look at this and other ways of stopping
actions before they’re allowed to run their normal course.

http://www.tads.org/howto/ActionMessages.zip

202

The effect of exit is to halt the action just at the point where the exit statement

appears, and skip straight to the end of turn processing (other actors’ actions, if any
are pending, Fuses and Daemons). Note, however, that the exit statement skips only

the rest of the command processing for the current action on the current object. So
for example, if the player enters the command take the apple, the carrot and the
banana and an exit macro is encountered in the course of taking the carrot, taking

the carrot will be skipped but the game will go on to try to take the banana. Likewise,
if the player enters several commands on the command line, only the current action is
skipped by an exit macro. For example, if the player had entered take the carrot

then go north and an exit macro prevented the taking of the carrot, the player

character would still try to go north.

It’s debatable whether we’d actually want the subsequent commands on the command
line to go ahead once one has failed. If immediately to the north of the player
character’s current location is a demon donkey who can only be appeased with a
carrot, then allowing go north to succeed after take carrot fails may have disastrous
consequences for the player character which the player was deliberately trying to
avoid. TADS 3 therefore allows an option to cancel the entire command line once an
action fails; to do this, set the cancelCmdLineOnFailure property of gameMain to true

(for more details look up this property on GameMainDef in the Library Reference

Manual).

Similar to the exit macro is the exitAction macro. The main difference is that

exitAction skips over the rest of the action handling and skips to the afterAction

phase (which we’ll see more about below), while exit skips over the afterAction stage

as well.

Neither of these macros skips over the iteration of multiple objects (the take apple,
banana and carrot case); if we wish to cancel iterating the same command over the
remainder of the objects, we need to call gAction.cancelIteration().

As we’ve just seen, we can set gameMain.cancelCmdLineOnFailure to true in order to

cancel the remainder of a command line once one action fails, but this is a global
action. If we wanted this cancellation to occur only in the case of the carrot and the
demon donkey, say, then we’d need some way of leaving the global option at its
default while cancelling the remainder of command line if taking the carrot fails. We
can do that by throwing a CancelCommandLineException e.g.:

carrot: Food 'carrot*carrots vegetables' 'carrot'
 "It's a particularly fine specimen, as carrots go. "
 dobjFor(Take)
 {
 check()
 {
 if(hilda.canSee(self))
 {
 reportFailure('Hilda snatches the carrot out of your hand and
 returns it to the vegetable rack. ');
 throw new CancelCommandLineException;

203

 }
 }
 }
;

This introduces a feature of TADS 3 programming we haven’t encountered before;
we’d better explain it now.

13.3 Coding Excursus 17 – Exceptions and Error Handling

We’ve just used some code that throws something called an Exception. In fact, that’s

what the exit and exitAction macros do too. These are, after all, macros, which

means they’re really a convenient abbreviation for some other code. Their full
definitions are:

#define exit throw new ExitSignal()
#define exitAction throw new ExitActionSignal()

To explain these seemingly mysterious definitions, we need to explain a little about
how TADS 3 handles Exceptions.

A TADS 3 Exception may be some kind of error condition, or it may just be used (as in
the examples above) as a convenient means of breaking out of a procedure
prematurely and skipping to some later point. In general, then, an Exception
represents some kind of unusual situation. More specifically, an Exception is an object
of the Exception class (or, more likely, of one its subclasses), that encapsulates some

kind of information about the exceptional situation.

The Exception mechanism has two main parts: throwing and catching. We have
already seen examples of an Exception being thrown, namely via a throw statement.

To throw an Exception of the MyException class we simply use a statement like:

throw new MyException;

As with any other dynamically created class, an Exception can have a constructor
(defined in its construct() method) to which parameters can be passed when the

Exception is created; this could be used to store additional information about the
exceptional circumstances that resulted in the Exception being thrown.

Once an Exception has been thrown, program execution jumps to the next enclosing
catch statement relevant to that kind of exception. For this to work, the Exception

must have been thrown in a block of code protected by a try statement. The general

coding pattern is:

someRoutine()
 try()
 {
 doSomeStuff();
 }

204

 catch(MyException myexc)
 {
 /* do something with myexc */
 }

 catch(SomeOtherException oexc)
 {
 /* do something with oexc */
 }

 finally
 {
 /* clean up afterwards */
 }
;

The code in the try block can be as extensive as we like. Here we envisage it calling a

doSomeStuff() method. If an Exception is thrown in the doSomeStuff() method, or

a method called by the doSomeStuff() method (and so on to any depth of nesting),

execution will still jump to the catch section of someRoutine() (unless

doSomeStuff() defines its own try...catch block to handle Exceptions). There can

be any number of catch blocks; the one that will be used is the first one to match the
class of Exception that has been raised (where matching means that the Exception
that has been raised is either of the same class as the class listed at the start of the
parentheses following the catch keyword or is a subclass of that class). Thus, for

example, if doSomeStuff() threw an Exception of the MyException class or of a

subclass of MyException, it would be caught by the first catch statement. The

Exception object that has been thrown is then assigned to the local variable named at
the end of the parenthesis (we can use any name we like for this). Thus, for example,
if doSomeStuff() threw a MyException, the MyException object would be assigned to

the local variable myexc, so that we could then do something with it if we wished

(such as displaying an error message from one of its methods or properties).

The finally clause is optional, but must come last if present. The code in the finally

block is executed before we leave someRoutine() however someRoutine() is

terminated (whether by return or goto or any other means). A finally block can

therefore be used to ensure things get tidied up even if an Exception has been raised.

This explanation is highly compressed; it’s more to alert you to the existence of the
Exception-handling mechanism than to give a full and detailed explanation. For a fuller
explanation, read the chapter on “Exceptions and Error Handling” in Part III of the
TADS 3 System Manual and look up the Exception class in the TADS 3 Library
Reference Manual. It’s also worth looking at the explanations of throw and try

towards the end of the “Procedural Code” chapter in Part III of the TADS 3 System
Manual.

205

13.4 Reacting to Actions

We have seen how the objects involved in an action can respond to it, but it’s also
possible to make other objects in scope react to it, both before it takes place and after
it has taken place. A reaction that occurs before the action takes place can prevent
the action happening at all (usually by means of the exit macro).

All the objects in scope get a chance to intervene beforehand in their beforeAction()

method. For example:

bob: Person 'bob/man' 'Bob'
 isHim = true
 isProperName = true
 beforeAction()
 {
 inherited;
 if(gActionIs(Yell))
 {
 reportFailure('There\'s no need to shout; Bob can hear you
 perfectly well. ');
 exit;
 }
 }
;

If we want the player's location to intervene, however, we have to use its
roomBeforeAction() method; e.g.:

lowCave: Room 'Low Cave'
 "There's not much headroom here. "
 roomBeforeAction()
 {
 if(gActionIs(Jump))
 failCheck('You\'d better not jump here; you\'d bump your head on the
 low ceiling. ');
 }
;

Note that because Room descends from Thing, calling failCheck(msg) is equivalent

to calling reportFailure(msg) followed by exit.

When exactly these two methods are run depends on the value of an option set in
gameMain.beforeRunsBeforeCheck. If this is true (the current default) then

beforeAction() and roomBeforeAction() run between the verify and check stages

of the action. If it is nil, then these before notifiers are run between the check and
action stages. This latter is arguably the better option: if an action fails at the check

stage it isn’t going to be carried out, so that it’s not then really appropriate for other
objects to react to it.

Objects and locations can also react to actions after the event, through their
afterAction() and roomAfterAction() methods (the latter used on the actor’s

location, a Room or Nested Room). For example:

206

lowCave: Room 'Low Cave'
 "There is very little headroom here. "
 roomAfterAction()
 {
 if(gActionIs(Jump))
 "Ouch! You bang your head on the ceiling. ";

 if(gActionIs(Yell))
 "Your shout echoes round the cave. ";
 }
;

+ vase: Thing 'vase*vases' 'vase'
 "It looks very delicate. "
 afterAction()
 {
 if(gActionIs(Yell) && !vase.location.ofKind(Actor))
 "The vase vibrates alarmingly. ";
 }
;

+ bob: Person 'bob/man*men' 'Bob'
 isHim = true
 isProperName = true
 afterAction()
 {
 inherited;
 if(gActionIs(Take) && gDobj == vase)
 "<q>Be careful with that!</q> Bob admonishes you. ";
 }
;

We call inherited on the beforeAction() and afterAction() methods of Bob, by the

way, since the library already defines something here that we don’t want to disable
(we’ll see more about that in the next chapter).

There are one or two other places we can intervene. Before roomBeforeAction() and

beforeAction() are called (in that order) beforeAction() is called on the current

action. Just before the check stage the actorAction() is called on the actor, and we

could use that to restrict the actor’s actions when blindfolded or tied up, for example:

me: Actor
 actorAction()
 {
 if(isTiedUp && gActionIs(Stand))
 failCheck('You can\'t stand up while you\'re all tied up. ');
 }
 isTiedUp = nil
;

Conversely afterAction() is called on the action (the gAction object) after

roomAfterAction() has been called on the current location. Once the action has been

carried out for every item in the list (which may be only one object for a command
like take vase but which could be several objects for a command like take all) the
method afterActionMain() is called on the action, and this in turn calls the

207

afterActionMain() method of every object registered in the current object's

afterActionMainList. This list can be be constructed by calling

callAfterActionMain(obj) to add an action to the list; but it is only meaningful to

do so while the action is in progress. This last mechanism is primarily intended for use
in summarizing the transcript, something we’ll briefly return to in Chapter 19.

For a full account of what happens when, see the article on “The Command Execution
Cycle” in the TADS 3 Technical Manual. This may, however, be an article you will want
to leave reading until later.

13.5 Reacting to Travel

Travelling is an action like any other action, and can be reacted to in the same way.
However, there’s a special set of methods for reacting to travel and it’s generally more
convenient to use these specialized travel-related methods rather than the more
generic beforeAction and afterAction methods.

We’ve already met one way of reacting to travel, namely by overriding the
noteTraversal(traveler) on the TravelConnector via which the travel is taking

place. In this instance the traveler parameter may be the actor whose travelling (if he
or she is on foot) or it may be the Vehicle the actor is travelling in. When this method
is called, travel is already taking place; the various beforeTravel notifications have
already been dealt with, so this method is a good place to carry out the side effects of
travel, such as displaying a message describing it. We can also display a message
describing travel in the travelDesc() method of a TravelMessage or

TravelWithMessage (which call travelDesc() from noteTraversal()).

The travelling equivalent of beforeAction() is beforeTravel(traveler,

connector). Once again traveler may be the actor (if on foot) or the Vehicle in which

the actor is travelling; connector is the TravelConnector via which the traveler is about
to travel. If we want to, we can cancel the travel before it gets going by using the
exit macro in this method, for example:

riverBank: OutdoorRoom 'Bank of River' 'the bank of the river'
 "A narrow bridge spans the river to the north. "
 north = bridge
;

+ troll: Person 'mean mean-looking troll/beast*beasts trolls' 'troll'
 "A true mean-looking beast! "
 beforeTravel(traveler, connector)
 {
 if(traveler == me && connector == bridge)
 failCheck('The troll blocks your path with a menacing growl! ');
 inherited(traveler, connector);
 }
;

There’s a couple of points to note in this example. Firstly, once again, we call the

208

inherited method. It is a good idea to get into the habit of always doing this on Actors
(and ActorStates, which we’ll meet in the next chapter), since if it’s not needed, it’ll do
no harm, but it frequently is needed and omitting it then is likely to break something
(a fairly easy way of introducing bugs into a game).

The second point to note is a second easy way to introduce bugs: suppose we later
went back to modify riverBank by adding a TravelMessage to its north property:

riverBank: OutdoorRoom 'Bank of River' 'the bank of the river'
 "A narrow bridge spans the river to the north. "
 north: TravelMessage { ->bridge
 "You walk cautiously onto the bridge. " }
;

Now when the player character tries to go north from the river bank, the
TravelConnector by which he’s attempting to travel is no longer the bridge but the

anonymous TravelConnector on riverBank.north, so that the troll will no longer block

the player character's path. One way to avoid this problem is to define the
beforeTravel method on the troll as:

+ troll: Person 'mean mean-looking troll/beast*trolls beasts' 'troll'
 "A true mean-looking beast! "
 beforeTravel(traveler, connector)
 {
 if(traveler == me && connector == riverBank.north)
 failCheck('The troll blocks your path with a menacing growl! ');
 inherited(traveler, connector);
 }
;

This will then work whether riverBank.north is left as bridge or subsequently

changed to a TravelMessage (or some other kind of TravelConnector).

The most convenient travelling equivalent of roomBeforeAction() is

leavingRoom(traveler), which would need to be overridden on the Room the

traveler (actor or vehicle) is about to leave. This is in turn called by
travelerLeaving(traveler, dest, connector) which we could override if for any

reason leavingRoom() won’t do the job for us (e.g. because we need to test where

the traveler is going); in that case we should need to make sure we also called the
inherited method, or we’d probably end up breaking something.

The travel equivalent of actorAction() is actorTravel(traveler, connector),

where traveler and connector have the same meanings as before. Once again, if we
do override this method, we must be careful to call inherited(traveler,

connector) somewhere in the overridden method.

Note that all the travel methods we have just seen are called on the room, or objects
in the room, that the actor is just about to leave. The next set of methods, equivalent
to the afterAction stage, are all called on the room, or objects in the room, that the
player has just entered (or is just entering) at the end point of travel.

209

The travel equivalent of afterAction() is afterTravel(traveler, connector). This

is called on all the objects in scope in the new location just as the actor is entering it.
So, for example, we could have:

+ bob: Person 'bob/man*men' 'Bob'
 isHim = true
 isProperName = true
 afterTravel(traveler, connector)
 {
 if(traveler == me)
 "<.p><q>Ah, there you are!</q> Bob greets you. ";
 inherited(traveler, connector);
 }
;

In practice we’d probably code this greeting a little differently (as should become
apparent in the next chapter), but the example serves to illustrate afterTravel()

well enough.

The equivalent method to call on the room the actor is just entering is
enteringRoom(traveler). One potential catch with it is that this method is called

before the room description is displayed; this may not be a problem, depending on
what you want to do, but if you want to display something after the room description
then it is a bit of a problem.

One work around is to use travelerArriving(traveler, origin, connector,

backConnector) method instead, and display your text after calling the inherited

method:

marsh: OutdoorRoom 'Marsh'
 travelerArriving(traveler, origin, connector, backConnector)
 {
 inherited(traveler, origin, connector, backConnector);
 if(traveler == me && me.getWeight() > 10)
 "<.p>You feel yourself start to sink into the marsh! ";
 }
;

You may also want to use travelerArriving() if you need to use any of its

arguments, in particular origin (the room the traveler has just arrived from) or
connector (the TravelConnector via which the traveler has just arrived). But if you do
override travelerArriving() make sure you call its inherited method somewhere,

otherwise you won’t get a description of the room the player character has just
entered!

210

13.6 NPC Actions

Actions carried out by NPCs (non-player characters, the other actors in our game
besides the player character, who is controlled by the player) present no particular
problems in TADS 3, since the library handles them in virtually the same manner as it
does actions carried out by the player character. If you actually need an action to work
differently for the player character and for NPCs you can test the identity of gActor,

either with gActor == gPlayerChar or with gActor == me or with

gActor.isPlayerChar(); for example:

largeBox: OpenableContainer 'large box*boxes' 'large box'
 dobjFor(Take)
 {
 check()
 {
 if(gActor.isPlayerChar())
 failCheck('You\'re too much of a weakling to pick it up; you\'ll
 have to persuade someone else to carry it for you. ');
 }
 }
;

The main thing we need to take care of if we want actions to work for actors other
than the player character is making sure any messages (or other output text) we write
will work as well for other actors as they do for the player character. In practice this
means that we must write them all with parameter substitution strings, not just as
straightforward text. For example, if an actor other than a player might put down the
vase, then instead of writing something like:

vase: Container 'priceless cut glass vase*vases' 'priceless vase'
 okayDropMsg = 'You carefully lower the vase to the ground. '
;

We must write:

vase: Container 'priceless cut glass vase*vases' 'priceless vase'
 okayDropMsg = '{You/he} carefully lower{s} the vase to the ground. '
;

Then we’ll get “You carefully lower the vase to the ground” or “Aunt Mildred carefully
lowers the vase to the ground” as appropriate (if you’re a bit uncertain about message
parameter strings – {you/he} and the like – read the article on “Message Parameter
Substitution” in the TADS 3 Technical Manual).

To make an NPC carry out an action we can use the macros newActorAction() or

nestedActorAction(). We’d use the first of these to make an NPC carry out a brand

new action and the second to make an NPC carry out one action as part of another.
Both macros are called with two or more arguments: the first argument is the actor
who is to carry out the action; the second is the action to be carried out. Any further

211

arguments are the objects on which the action is to be carried out. So, for example,
we could have:

newActorAction(bob, Jump);
newActorAction(bob, Take, redBall);
newActorAction(bob, PutIn, redBall, blueBox);

The first of these would make Bob jump; the second would make Bob take the red
ball; the third would make Bob put the red ball in the blue box.

Note that all of these are ways of making Bob act ‘spontaneously’ (under program
control); they are not ways in which the player or player character gives orders to
Bob, they are ways in which the game author can make Bob do things.

Making NPCs carry out actions is only a small part of implementing NPC behaviour. In
the next chapter we shall go on to see what else we can do with NPCs in TADS 3.

212

14 Non-Player Characters

14.1 Introduction to NPCs

Non-Player Characters (or NPCs) are any actors (or if you like, any animate objects)
that appear in our game besides the Player Character (the character whose actions
are controlled by the player). By ‘appear’ we mean any actor that is actually
implemented as an object in the game, and not merely mentioned in a cut-scene,
conversation, or some other passing reference.

TADS 3 offers a rich set of tools for controlling NPC behaviour and, in particular, for
writing conversations between the player character and NPCs, although making lifelike
NPCs remains one of the most difficult and challenging tasks facing any IF author.

The features TADS 3 offers for implementing NPCs are quite fully documented in three
linked articles in the TADS 3 Technical Manual: “Creating Dynamic Characters”,
“Choosing a Conversation System” and “Programming Conversations with NPCs”;
anyone planning to do any serious work with NPCs in TADS 3 should certainly read all
three articles. The present chapter will simply try to give a compressed summary of
this material, an overview of what is possible with NPCs in TADS 3, and one or two
additional tips along the way.

We’ll start with a very brief overview indeed, which we’ll flesh out in the following
sections. The way TADS 3 is designed means that we generally write very little code
on the NPC objects themselves, even for very complex NPCs, since most of an NPC’s
behaviour is defined on other objects, which we locate (with the + notation) inside the
NPC (or Actor) object itself. These other objects include ActorStates, TopicEntries,
Conversation Nodes and AgendaItems (all of which we’ll look at it in more detail
below). An ActorState represents what an Actor is currently doing, generally speaking
his or her physical state (such as conversing with the player character, sitting doing
some knitting, digging the road, sleeping profoundly, reciting an epic poem, or
anything else we care to model in our game). This allows us to define most of the
NPC’s state-dependent behaviour on the ActorState objects instead of the Actor.
TopicEntries represent the NPC’s responses to conversational commands (such as ask
bob about susan, tell bob about about treasure, or show bob the strange
coin). Broadly speaking, each topic is handled by a different TopicEntry; TopicEntries
may either be located in the Actor object, or in one of its ActorStates (if they are
specific to that state). A Conversation Node is an object representing a particular point
in the conversation when certain responses become meaningful (e.g. when the NPC
has just asked the Player Character a question to which the replies yes or no might
be appropriate). Finally, an AgendaItem is an object encapsulating something the NPC
wants to say or do when the conditions are right and the opportunity arises.

The reason for using all these different kinds of object is that we can thereby avoid a
great deal of complicated ‘spaghetti’ programming with convoluted if-statement and

213

massive switch statements. By distributing the behaviour of a complex NPC over a
great many objects of different kinds, we can make each piece of code quite simple,
indeed we can often avoid the need to write any code at all, defining much of the
NPC’s behaviour purely declaratively. This makes for code that is ultimately easier to
write, easier to maintain, and less prone to hard-to-track-down bugs.

14.2 Actors

Three kinds of Actor come standard with TADS 3.

First, there is the Actor class. The Actor class defines most of the behaviour needed

for animate objects (NPCs). NPCs defined with the Actor class are portable (the

player character can pick them up and take them around), so this would be the class
to use for small animals such a cats, mice and rabbits.

UntakeableActor is a subclass of Actor. An UntakeableActor is one that can’t be

picked up and carried around, so we’d typically use it for larger animals like cows,
horses and elephants.

Person is a subclass of UntakeableActor. This is the class we’d normally use for

human and human-like NPCs (which might include aliens and intelligent robots). The
only real difference between a Person and an UntakeableActor is that a few of the

action response messages (relating to taking and moving) have been customized to
be more suitable for a person. In addition, a Person is given a default bulk of 10.

There is not a huge difference between these three classes: the player character can
give orders to NPCs of all three classes, and we can define conversational responses
and agenda items for all three.

The definition of an Actor object can be fairly minimal: we need to specify its
vocabWords and name, and we probably want to give it a description. If it’s a person

(or gendered animal) we need to remember to indicates its gender by defining isHim

= true or isHer = true. If the Actor has a proper name (e.g. ‘Bob’ rather than ‘the

tall man’ or whatever) we also need to remember to define isProperName = true (so

we don’t see him referred to as ‘the Bob’). So a minimal Actor object definition might
look like:

mavis: Person 'old frail aunt woman/mavis*women' 'Aunt Mavis'
 "Well past her prime, she is now looking distinctly frail. "
 isHer = true
 isProperName = true
;

In practice we’d probably want a bit more than that. In particular, we’d probably want
to define some handling for custom actions, or at least customize some of the action
response messages, e.g.:

214

mavis: Person 'old frail aunt woman/mavis*women' 'Aunt Mavis' @lounge
 "Well past her prime, she is now looking distinctly frail. "
 isHer = true
 isProperName = true
 cannotKissActorMsg = 'She\'s not of a generation that welcomes outward
 shows of affection. '
 cannotEatMsg = 'Whatever else Aunt Mavis is, she is definitely not that
 tasty. '
 uselessToAttackMsg = 'Beating up Aunt Mavis will not encourage her to be
 generous to you in her will. '
;

If the actor’s name can change during the course of play (typically because the player
character comes to know the actor better), for example changing from ‘The tall man’
to ‘Bob’, then it’s also very useful to define the globalParamName property. This can be

defined as any (single-quoted) string value we like, but it’s generally a good idea to
make it resemble the actor’s name. We can then use this string value in a parameter
substitution string. For example, if we gave Mavis a globalParamName of 'mavis', we

could then refer to her in any messages we write as '{The mavis/she}', which would

expand to 'the old woman' or 'Aunt Mavis' or whatever her current name property
was. This would then enable us to write all our messages about Mavis knowing that
they’ll use the right name for her whatever the player character knows her as at the
point when they’re displayed.

To give another example of this:

bob: Person 'tall man*men' 'tall man' @highStreet
 "He's a tall man, wearing a smart business suit and sporting a thin
 moustache. "
 isHim = true
 globalParamName = 'bob'
 makeProper(properName)
 {
 name = properName;
 isProperName = true;
 initializeVocabWith(properName.toLower());
 return name;
 }
;

Here, makeProper() is a custom method we’ve just defined. It would allow us to write

code like "<q>Hello, I'm <<bob.makeProper('Bob')>>,</q> he introduces

himself. ", which would update his name, isProperName and vocabWords properties

in line with his self-introduction. Descriptions like "You see {a bob/him} standing

in the street" would then change from “You see a tall man standing in the street”

to “You see Bob standing in the street”.

One further point; note that with both the mavis object and the bob object we defined

the initial location of the actor with the @ symbol in the template. If we’re defining an

NPC of any complexity (for whom we’re going to define quite a few associated objects)

215

it’s probably better to put all the code relating to that NPC in a separate source file,
rather than nesting it all in the NPC’s starting location with the + notation (which, with

an NPC of any complexity, very quickly becomes ++, +++ and ++++).

We can give an NPC possessions and clothing just like the player character, by locating
them just inside the relevant actor object. We can also give an NPC body parts (if we
feel we need to) by making them components of the NPC. For example, immediately
following the above definition of the bob object we might add:

+ Component 'thin moustache'
 name = (bob.theName) + '\'s moustache')
;

+ Wearable 'smart business suit*suits clothes' 'suit'
 wornBy = bob
;

+ stick: Thing 'walking stick*sticks' 'walking stick'
;

We’d no doubt also want to add descriptions for all three of these objects, and maybe
some custom messages (e.g. responding to commands like pull moustache), but the
minimalist code above suffices to demonstrate the principle.

14.3 Actor States

NPCs who show any interesting signs of life are likely to be doing different things at
different times. Aunt Mavis may stand staring at herself in the mirror, or sit to read a
book, or nod off to sleep, or engage in vigorous conversation with the player
character. Bob won’t stand around in the street forever, he may go into a restaurant to
buy lunch, or in another scene he may be seated behind his desk or out playing golf.
The way we want to describe an NPC, and the way we want NPCs to respond to what’s
going on around them, will vary according to what the NPC is up to at the time. To
encapsulate this behaviour we use ActorState objects, which we locate in the actor

object to which they refer. For example:

bob: Person 'tall man*men' 'tall man' @highStreet
 "He's a tall man, wearing a smart business suit and sporting a thin
 moustache. "
 isHim = true
 globalParamName = 'bob'
;

+ bobStanding: ActorState
 isInitState = true
 specialDesc = "{The bob/he} is standing in the street, looking in a shop
 window. "
 stateDesc = "He's looking in a shop window. "
;

+ bobWalking: ActorState
 specialDesc = "{The bob/he} is walking briskly down the street. "

216

 stateDesc = "He's walking briskly down the street. "
;

The most commonly used properties and methods defined on the ActorState class
include:

● isInitState – set to true if this is the ActorState the associated actor starts

out in.

● specialDesc – the description of the NPC as it appears in a room description

when the NPC is in this ActorState.

● stateDesc – an additional description of the NPC appended to the desc

property of the associated actor when the NPC is in this ActorState.

● getActor() - the actor with which this ActorState is associated (note, this

should be treated as a read-only method; we don’t use it to associate an Actor
with an ActorState but only to find out which Actor is already associated with a
particular ActorState.

● activateState(actor, oldState) - this method is executed just as this

ActorState becomes active (i.e. becomes the current state for the associated
Actor).

● deactivateState(actor, newState) – called just as the associated Actor is

about to switch from this state to newState.

In addition ActorState defines the methods beforeAction(), afterAction(),

beforeTravel(traveler, connector) and afterTravel(traveler, connector),

which have the same meaning as these methods do in sections 13.4 and 13.5 above,
except that they are particular to the ActorState. This allows us to define a different
reaction to actions and travel on each ActorState. If we want a common reaction (e.g.
Aunt Mavis reacts the same way to the player character yelling no matter what
ActorState she’s in) we can define it on the actor object, but we must then call the
inherited method, otherwise we’ll break the mechanism that farms these responses
out to ActorStates in other cases:

mavis: Person 'old frail aunt woman/mavis*women' 'Aunt Mavis' @lounge
 "Well past her prime, she is now looking distinctly frail. "
 afterAction()
 {
 if(gActionIs(Yell))
 "Aunt Mavis glowers at you with a look fit to freeze the sun. ";

 inherited; // DON'T FORGET THIS
 }
;

More usually, we'd define this kind of reaction on the ActorState, for example:

+ mavisReading: ActorState
 specialDesc = "Aunt Mavis is sitting in her favourite chair, engrossed

217

 in <i>The Last Chronicle of Barset</i>. "
 stateDesc = "She's sitting reading her favourite Trollope novel. "
 afterAction()
 {
 if(gActionIs(Yell))
 "Aunt Mavis peers over the top of her novel to give you a look
 that would have silenced even Mrs Proudie. ";
 }
;

Or

+ bobStanding: ActorState
 isInitState = true
 specialDesc = "{The bob/he} is standing in the street, looking in a shop
 window. "
 stateDesc = "He's looking in a shop window. "
 afterTravel(traveler, connector)
 {
 inherited(traveler, connector);

 if(traveler == me)
 {
 "{The bob/he} takes one look at you, and then turns away and
 starts walking briskly down the street. ";
 bob.setCurState(bobWalking);
 }
 }
;

Note the use of setCurState(state) to change an actor's ActorState to state. If we

want to change an actor's ActorState in our code, we should always use this method,
and never directly assign a value directly to the curState property. We can, however,

of course test the curState property to find out what ActorState an actor is currently

in.

ActorState defines a number of other methods, but one other of particular interest is
takeTurn(). This is run each turn the associated actor is in this state, and does a

number of things by default (so that if we override it we must be sure to call the
inherited method unless we’re really absolutely sure we don’t want it). One of the
things it does is call the doScript() method of the ActorState if the ActorState is also

an EventList of some kind (provided the actor isn’t already engaged in something with
a higher priority like an AgendaItem or Conversation Node, on which see below) . This
means we can can define an ActorState like this:

+ mavisReading: ActorState, ShuffledEventList
 specialDesc = "Aunt Mavis is sitting in her favourite chair, engrossed
 in <i>The Last Chronicle of Barset</i>. "
 stateDesc = "She's sitting reading her favourite Trollope novel. "
 eventList =
 [
 'Aunt Mavis turns over another page of her book. ',
 'Aunt Mavis chuckles to herself. ',
 'Aunt Mavis snorts with disapproval. ',
 'Aunt Mavis glances over the top of her book at you, as if to

218

 reassure herself that you\'re not disbehaving. '

]
;

And we’ll see one of these ‘Aunt Mavis’ messages each turn, thus helping to bring
Aunt Mavis a little more to life.

We can use the ActorState class (and it’s sometimes useful to do so), but there are
also a number of commonly used subclasses of ActorState with more specialized uses:

● HermitActorState – a state to use for an actor who is sleeping, unconscious,

or so preoccupied with what he or she is doing that s/he won’t respond to the
player character when the player tries to address a conversational command to
him or her. The noResponse property of a HermitActorState can be overridden

(with a double-quoted string) to display a message explaining why the actor
won’t respond.

● AccompanyingState – a state to use for an actor who will follow the player

character around for as long as s/he’s in this state. If you override the
beforeTravel() method on an AccompanyingState be absolutely sure to call

the inherited method, or you’ll disable the following mechanism! The
accompanyTravel(traveler, conn) can be used to check whether the actor is

willing to follow traveler (normally the player character) through the connector
conn; return nil to stop the actor following the traveler that way, or use exit to

prevent the traveler going that way too. Override arrivingWithDesc to display

a message describing the arrival of the following actor in a new location.

● GuidedTourState – a subclass of AccompanyingState to use when you want

the actor to lead the player character. The actor will wait for the player
character to follow him or her, and the player can choose not to follow. Set the
escortDest property to the TravelConnector the actor wants to lead the player

character through. Set the stateAfterEscort property to the ActorState object

to change to after the player character has followed the actor through this
connector (this might be another GuidedTourState representing the next stage

of the journey on which the actor wants to lead the player character). If you
use this class you might want to add TourGuide to the class list of the

associated actor; this will allow the player to use the command follow x to
follow the actor x when he or she is in a GuidedTourState.

● ConversationReadyState – a state to use for an NPC who is ready to enter into

a conversation when greeted. We’ll explain this further below in section 14.6.

● InConversationState – a state to use for an NPC who was in a

ConversationReadyState but is now conversing with the player character. We’ll

explain this further below.

219

14.4 Conversing with NPCs – Topic Entries

The standard form of conversation implemented in the TADS 3 library is the ask/tell
model. This handles commands like ask bob about shopping or tell mavis about
barchester. It also handles commands of the form show gold ring to bob, give
coin to shopkeeper and ask king henry for his crown.

In TADS 3, the responses to such conversational commands are defined in objects of
the TopicEntry class, or rather, of one of the various subclasses of TopicEntry. We

have already met one such subclass, namely ConsultTopic, used to look up entries in

a Consultable. The other TopicEntry subclasses work in a similar way, except that

they handle conversational commands (of the types we have just seen) rather than
attempts to look things up.

The various subclasses of TopicEntry we are immediately concerned with here are:

● AskTopic – the response to a command of the form ask someone about x.

● TellTopic – the response to a command of the form tell someone about x.

● AskTellTopic – responds to ask someone about x or tell someone about

x.

● GiveTopic – responds to give something to someone

● ShowTopic – responds to show something to someone

● GiveShowTopic – responds to give something to someone or show

something to someone

● AskForTopic – responds to ask someone for x

● AskAboutForTopic – responds to ask someone about x or ask someone for

x

● AskTellAboutForTopic – responds to ask someone about x or tell someone

about x or ask someone for x

● AskTellGiveShowTopic – responds to ask someone about something or tell

someone about something or give something to someone or show
something to someone.

● AskTellShowTopic – responds to ask someone about something or tell

someone about something or show something to someone

In the above list, someone is the NPC we’re talking with, something is generally a
Thing (i.e. an object of class Thing implemented somewhere in the game) and x can
be either a Thing or a Topic.

To define which Thing or Topic a TopicEntry relates to we define its matchObj property.

This can either be a single object (a Thing, or where appropriate, a Topic) or it can be

220

a list of Things (or, where appropriate, Topics, or a mixture of Things and Topics). If
it’s a list then the TopicEntry will be matched provided any one of the objects in the
list match what the player wants to talk about, and provided the player character
knows about the object in question (i.e. gPlayerChar.knowsAbout(x) is true, where x

is the relevant object).

How the NPC responds to the conversational command (or better, the complete
conversational exchange) is defined in the topicResponse property. This may be

defined simply as a double-quoted string to display what is said, or it can be defined
as a method to display the conversational command and carry out some related side-
effects, e.g.:

+ GiveTopic
 matchObj = coin
 topicResponse()
 {
 "You give {the bob/him} the coin and he accepts it with a curt nod. ";
 coin.moveInto(bob);
 }
;

Or in a simpler case:

+ AskTopic
 matchObject = tTrollope
 topicResponse = "<q>Tell me, aunt, do you really think Anthony Trollope is
 such a great novelist?</q> you ask.\b
 <q>I find his writing infinitely preferable to your idle chatter,</q> she
 replies frostily. "
;

Since the matchObj and topicResponse properties of Topic Entries are defined so

frequently, the above examples can be written more succinctly using a template:

+ GiveTopic @coin
 topicResponse()
 {
 "You give {the bob/him} the coin and he accepts it with a curt nod. ";
 coin.moveInto(bob);
 }
;

+ AskTopic @tTrollope
 "<q>Tell me, aunt, do you really think Anthony Trollope is
 such a great novelist?</q> you ask.\b
 <q>I find his writing infinitely preferable to your idle chatter,</q> she
 replies frostily. "
;

We can also use a template when the matchObj contains a list of objects, for example
if the matchObj for the AskTopic had been:

matchObj = [tTrollope, novel]

221

We could define the AskTopic as:

+ AskTopic [tTrollope, novel]
 "<q>Tell me, aunt, do you really think Anthony Trollope is
 such a great novelist?</q> you ask.\b
 <q>I find his writing infinitely preferable to your idle chatter,</q> she
 replies frostily. "
;

One slight problem with this AskTopic is that if the player keeps issuing the command
ask mavis about trollope or ask mavis about novel she’ll keep giving the same
response, which will pretty quickly make her seem either surreal or robotic. If we
want to vary her response, we can include an EventList class in the class list of the
TopicEntry and define the eventList property instead of the topicResponse property, for
example:

+ AskTopic, StopEventList
 matchObj = [tTrollope, novel]
 eventList =
 [
 '<q>Tell me, aunt, do you really think Anthony Trollope is
 such a great novelist?</q> you ask.\b
 <q>I find his writing infinitely preferable to your idle chatter,</q> she
 replies frostily.',

 '<q>Seriously, aunt, is Trollope that great a novelist?</q> you ask.
 <q>My English master at school always thought him a bit of a
 second-rate Victorian hack.</q>\b
 <q>Then you obviously went to the wrong school!</q> your aunt
 replies, visibly bridling. ',

 'It might be wise to leave that topic alone, before you cause any
 further offence. '
]
;

Once again, this is sufficiently common that we can write it using a template:

+ AskTopic, StopEventList [tTrollope, novel]
 [
 '<q>Tell me, aunt, do you really think Anthony Trollope is
 such a great novelist?</q> you ask.\b
 <q>I find his writing infinitely preferable to your idle chatter,</q> she
 replies frostily.',

 '<q>Seriously, aunt, is Trollope that great a novelist?</q> you ask.
 <q>My English master at school always thought him a bit of a
 second-rate Victorian hack.</q>\b
 <q>Then you evidently went to the wrong school!</q> your aunt
 declares, visibly bridling. ',

 'It might be wise to leave that topic alone, before you cause any
 further offence. '
]
;

222

We could use a similar template form with @tTrollope (a single matchObj) in place of

[tTrollope, novel] (the matchObj list).

Another way to vary the response is to make the availability of certain Topic Entries
dependent upon some condition, such as what has been said previously, or some
aspect of the game state. We can do that by attaching a condition (or rather an
expression that may be either true or false) to the isActive property of a Topic Entry.

For example, we may want to ask Bob a certain question about the lighthouse only if
the player character has actually seen the lighthouse, so we might write:

+ AskTopic @lighthouse
 "<q>What exactly happened at the lighthouse?</q> you ask. <q>When I saw
 it, it looked as if someone had tried to set it on fire!</q>\b
 <q>It was the troubles,</q> he replies grimly, <q>but you don't want to
 know about them, you really don't!</q> "

 isActive = me.hasSeen(lighthouse)
;

It may that we’d want to ask a different question about the lighthouse if the player
character hadn’t seen it, so we could write:

+ AskTopic @lighthouse
 "<q>What's this I hear about a lighthouse?</q> you ask.\b
 <q>Oh, you don't want to go there,</q> he tells you, <q>there's nothing
 of interest at all, besides... well, just don't bother with it, that's
 all.</q> "

 isActive = !me.hasSeen(lighthouse)
;

Then we’d get one response when the player character had seen the lighthouse and
another when s/he hadn’t.

An alternative would be to make use of a property we haven’t mentioned yet, namely
matchScore. When TADS 3 finds more than one TopicEntry that could match the

conversational command the player typed, it chooses the one with the highest
matchScore. The default matchScore of a TopicEntry is 100, so we could write:

+ AskTopic @lighthouse
 "<q>What's this I hear about a lighthouse?</q> you ask.\b
 <q>Oh, you don't want to go there,</q> he tells you, <q>there's nothing
 of interest at all, besides... well, just don't bother with it, that's
 all.</q> "
 matchScore = 90
;

The matchScore property can also be assigned via the template, using the + symbol

and making it the first item, so this could be written:

+ AskTopic +90 @lighthouse
 "<q>What's this I hear about a lighthouse?</q> you ask.\b
 <q>Oh, you don't want to go there,</q> he tells you, <q>there's nothing

223

 of interest at all, besides... well, just don't bother with it, that's
 all.</q> "
;

When the player character hasn’t seen the lighthouse the first AskTopic can’t match
(since its isActive property evaluates to nil), so we get the second AskTopic

response. When the player character has seen the lighthouse both AskTopics match,
so the one with the higher matchScore wins, and we get the “What exactly happened

at the lighthouse?” exchange.

Although matchScore can be useful in other circumstances, and this would work here,

in practice we’d probably use a different technique for this particular kind of situation,
using an AltTopic. An AltTopic is an Alternative Topic Entry for use when we want to

match the same object, or set of objects, but want a different response when some
particular condition is true. In this instance we’d probably set it up like this:

+ AskTopic @lighthouse
 "<q>What's this I hear about a lighthouse?</q> you ask.\b
 <q>Oh, you don't want to go there,</q> he tells you, <q>there's nothing
 of interest at all, besides... well, just don't bother with it, that's
 all.</q> "
;

++ AltTopic
 "<q>What exactly happened at the lighthouse?</q> you ask. <q>When I saw
 it, it looked as if someone had tried to set it on fire!</q>\b
 <q>It was the troubles,</q> he replies grimly, <q>but you don't want to
 know about them, you really don't!</q><.reveal bob-troubles> "

 isActive = me.hasSeen(lighthouse)
;

Note how this works. We locate the AltTopic in the Topic Entry with which it’s

associated (by giving it one more + than its associated Topic Entry has in the

containment hierarchy). We don’t define the objects it’s meant to match, or whether
it’s meant to match ask, tell, show, or give, since these will always be the same as for
the Topic Entry we’ve located it in. Instead we define its isActive property to give the

condition that must be true for this AltTopic to be used in preference to its parent

Topic Entry. We can follow a Topic Entry with as many AltTopics (located in it) as we
like; the one that will be used is always the last one in the list whose isActive

property is true.

Note also that we’ve added <.reveal bob-troubles> to the topicResponse of the

AltTopic. We encountered the reveal mechanism in the chapter on Knowledge, but this
is the first time we’ve seen it used in the situation for which it was principally
designed, namely to keep track of what has already been said in a conversation. Just
to recap, including <.reveal tag> in a string cause the string tag to be added to the

table of things that have been revealed, which we can then test for with
gRevealed('tag'). We’ve used the tag 'bob-troubles' here to note that Bob has now

224

mentioned the troubles. This would allows us to write a subsequent AskTopic that
should only come into effect once Bob has referred to the troubles in something he’s
said:

+ AskTopic @tTroubles
 "<q>What are these troubles you mentioned?</q> you want to know.\b
 <q>Never you mind, they're best forgotten,</q> he mutters. "
 isActive = gRevealed('bob-troubles')
;

This ensures that the question about the troubles can’t be asked until Bob has
mentioned the troubles (since the exchange clearly presupposes that Bob has
previously mentioned the troubles). Of course it doesn’t stop the player from typing
the command ask bob about troubles, but it may be that until Bob mentions the
troubles there won’t be any matching Topic Entry for this question. Indeed players are
likely to try asking and telling our NPCs about all sorts of things for which we haven’t
provided a specific response. In such a case we ideally need our NPCs to make some
vague non-committal response that shows that they’re still in the conversation without
saying anything positively incongruous. For this purpose TADS defines a special kind
of Topic Entry called a DefaultTopic. Or rather, TADS defines a range of DefaultTopic

classes to handle default responses for a variety of conversational commands:

● DefaultAskTopic – responds to ask about

● DefaultTellTopic – responds to tell about

● DefaultAskTellTopic – responds to ask about or tell about

● DefaultGiveTopic – responds to give

● DefaultShowTopic – responds to show

● DefaultGiveShowTopic – responds to give or show

● DefaultAskForTopic – responds to ask for

● DefaultAnyTopic – responds to any conversational command

These various kinds of DefaultTopic match any topic or object, but they have low

matchScores, so that where a more specific response exists (and is active), it will
always be used in preference to the DefaultTopic. There’s also a hierarchy among the
DefaultTopic classes: a DefaultAnyTopic has a matchScore of 1;

DefaultAskTellTopic and DefaultGiveShowTopic have a matchScore of 2; and the

other four have a matchScore of 3. This means, for example, that if we have defined a

DefaultAnyTopic, a DefaultAskTellTopic, and a DefaultAskTopic, the

DefaultAskTellTopic will be used in preference to the DefaultAnyTopic, and the

DefaultAskTopic in preference to the DefaultAskTellTopic.

225

Normally the only property we need to define on a DefaultTopic is its topicResponse.

So, for example, for Aunt Mavis we might define:

+ DefaultGiveShowTopic
 topicResponse = "Aunt Mavis waves {the dobj/him} away with an impatient
 gesture. "
;

+ DefaultAnyTopic
 topicResponse = "Aunt Mavis peers over the top of her book and replies,
 <q>Why people feel the need to fill the air with such pointless noise
 is quite beyond me. Really, if you don't have anything more important
 to talk about than that, you should not disturb me with it!</q> "
;

Once again, we can make these definitions a bit more concise using a template:

+ DefaultGiveShowTopic
 "Aunt Mavis waves {the dobj/him} away with an impatient gesture. "
;

+ DefaultAnyTopic
 "Aunt Mavis peers over the top of her book and replies,
 <q>Why people feel the need to fill the air with such pointless noise
 is quite beyond me. Really, if you don't have anything more important
 to talk about than that, you should not disturb me with it!</q> "
;

Since players are likely to encounter our DefaultTopics fairly frequently, it’s a good
idea to vary the response they’ll see; once again, this can help to make our NPCs
seem a little less robotic. The way to do this is to add an EventList class (usually
ShuffledEventList, in this context) to the DefaultTopic class and define a varied list of
default responses in the eventList property. This property can again be implicitly

defined using the DefaultTopic template, e.g.

+ DefaultAnyTopic, ShuffledEventList
 [
 'Aunt Mavis peers over the top of her book and replies,
 <q>Why people feel the need to fill the air with such pointless noise
 is quite beyond me. Really, if you don't have anything more important
 to talk about than that, you should not disturb me with it!</q> ',

 '<q>Can't you see I'm trying to read?</q> she complains irritably,
 <q>Really, the manners of people these days!</q> ',

 '<q>We can discuss that when I'm not trying to read,</q> she suggests. '
]
;

We’ve now covered the basics of using Topic Entries to define conversational
responses apart from one rather major point: we’ve shown how to define Topic Entry
objects, but we haven’t yet discussed where to put them. Clearly Topic Entries need to
be associated with the actor whose conversation they’re implementing, and this can
be done in one of four ways:

226

1. Topic Entries can be located directly in their associated actor, in which case
(with certain qualifications) they’ll be available whenever the player character
addresses that actor.

2. Topic Entries can be located in one of their associated actor’s ActorStates
(typically, but not exclusively, an InConversationState), in which case they

will be available only when the actor is in that ActorState.

3. TopicEntries can be located in a TopicGroup. They are then available when the

TopicGroup is active (and its location is available).

4. TopicEntries can be located in a ConvNode, but that’s something we’ll come to
later.

A TopicGroup is basically a way to apply a common isActive condition to a group of

Topic Entries. Topic Entries within a TopicGroup may also define their own individual

isActive conditions, in which case both the isActive condition on the TopicGroup

and the isActive condition on the individual Topic Entry must be true for that

individual Topic Entry to be reachable. A TopicGroup can go anywhere a Topic Entry
can go, located either in an Actor, or in an ActorState, or in another TopicGroup. In
addition to the isActive property, TopicGroup defines a matchScoreAdjustment

property which can be used to boost the matchScores of all the Topic Entries in the
TopicGroup. For example, if we give a TopicGroup a matchScoreAdjustment of 10,

then any Topic Entry within it which has a default matchScore of 100 will have an

effective matchScore of 110. Apart from the effects of the TopicGroup’s isActive and

matchScoreAdjustment properties, Topic Entries in a TopicGroup behave just as if

they were in that TopicGroup’s container.

This may all become a little clearer with a skeletal example:

mary: Person 'mary/woman*women' 'Mary'
 isProperName = true
 isHer = true
;

+ TopicGroup
 isActive = (mary.curState is in (maryWalking, maryTalking))
;

++ AskTopic @robert
 "blah blah"
;

++ TellTopic @tWedding
 "blah blah"
;

+ AskTopic @mary
 "blah blah"
;

227

+ maryWalking: AccompanyingState
 specialDesc = "Mary is walking along beside you. "
;

++ AskTopic @tShopping
 "blah blah"
;

++ TellTopic @robert
 "blah blah"
;

+++ AltTopic
 "blah blah"
 isActive = gRevealed('robert-affair')
;

++ DefaultAnyTopic
 "blah blah"
;

+ maryTalking: ActorState
 specialDesc = "Mary is looking at you. "
;

++ GiveTopic @ring
 "blah blah"
;

++ AskTopic @robert
 "blah blah"
;

+ marySinging: HermitActorState
 specialDesc = "Mary is busily rehearsing an aria from <i>The Marriage of
 Figaro<i>. "
 noResponse = "You don't like to interrupt her singing. "
;

The TopicGroup directly under Mary is active when Mary is either in the maryTalking

state or in the maryWalking state; this is a convenient way to make a group of Topic

Entries common to two or more Actor States (but not all of them). Note that there's
an AskTopic for Robert defined under both the TopicGroup and the maryTalking

ActorState; when Mary is in the maryTalking state it’s the latter that will be used,

since an ActorState’s Topic Entries are always used in preference to that of an Actor’s.
A subtler effect of this is that the DefaultAnyTopic in the maryWalking state will render

all the Topic Entries in our TopicGroup unreachable when Mary is in the maryWalking

state. This probably isn’t what we want; the solution (if we see this is a problem) is to
override either the excludeMatch property or the deferToEntry(other) method of

the DefaultAnyTopic.

The excludeMatch property can contain a list of topics we don’t want a DefaultTopic to

match, so if want the two Topic Entries we’ve put in the TopicGroup and the one we’ve
put directly in the mary object to be reachable even when when Mary is in the

228

maryWalkingState we could define the DefaultAnyTopic as:

++ DefaultAnyTopic
 "blah blah"
 excludeMatch = [mary, robert, tWedding]
;

A more general solution, which doesn’t rely on our having to list specific topics to
exclude from what a DefaultTopic matches is to override the deferToEntry(other)

method to have the DefaultTopic defer to any Topic Entry outside the current
ActorState (or ConvNode). This will occur for any Topic Entry other for which
deferToEntry(other) returns true. So, to make all the non-default Topic Entries

defined on the actor object (or any TopicGroups located in the actor object) available
even when Mary is in maryWalkingState we should define the DefaultAnyTopic as:

++ DefaultAnyTopic
 "blah blah"
 deferToEntry(other) { return !other.ofKind(DefaultTopic); }
;

14.5 Suggesting Topics of Conversation

One thing we don’t want is for people playing our game to feel that they’re having to
play “guess the topic” when they’re conversing with our NPCs. We don’t want them to
become frustrated by reading our default responses dozens of times over while
hunting for the few topics we’ve actually implemented, and we don’t want them to
miss the topics that are vital to their understanding of the game or the advancement
of the plot. It may be that we can avoid all these problems by making it obvious from
the context and from our NPCs’ previous replies which topics are worth talking about,
but it may be we want to give our players a helping hand by suggesting which topics
are particularly worth asking or telling about.

We can do this using SuggestedTopics. Those that correspond to the Topic Entry types
we have met so far come in the following flavours:

● SuggestedAskTopic – suggest something to ask about

● SuggestedTellTopic – suggest something to tell about

● SuggestedGiveTopic – suggest something to give

● SuggestedShowTopic – suggest something to show

● SuggestedAskForTopic – suggest something to ask for

The way we use these is to add them to the class list of the Topic Entries we want to
suggest, and then to define a name property defining how we want the suggestion

described. This should be a (single-quoted) string that could meaningfully complete a
sentence like “You could ask Anne about...” or “You could tell Bob about...” or “You

229

could show him...” For example:

+ AskTopic, SuggestedAskTopic @mavis
 "<q>How are you today, Aunt Mavis?</q> you enquire.\b
 <q>Well enough,</q> she replies. "
 name = 'herself'
;

+ TellTopic, SuggestedTellTopic @me
 "<q>You know aunt, I've been meaning to tell you about..."
 name = 'yourself'
;

+ GiveShowTopic, SuggestedShowTopic @ring
 "<q>That's a nice ring!</q> she declares. "
 name = (ring.theName)
;

+ AskForTopic, SuggestedAskForTopic @tMoney
 "<q>Could you lend me..."
 name = 'money'
;

Suggestions are displayed either when the player character explicitly greets the actor
(with a command like talk to aunt or say hello to mavis) or in response to an
explicit topics command, or when the game author schedules a display of suggested
topics using the <.topics> tag in conversational output. Suggestions are generally

only displayed when they’re reachable (although occasionally there can be
arrangements of Topic Entries that are too complicated for the library to work this
out). Normally each SuggestedTopic will only be suggested once, that is only
suggested until the player tries conversing about the topic in question for the first
time. Strictly speaking, a SuggestedTopic continues to be suggested until its
curiositySatisfied property becomes true. By default this is when it has been

accessed the number of times defined in its timesToSuggest property, and in turn the

default value of timesToSuggest is 1. But when a SuggestedTopic is combined with an

EventList, we may want to suggest the topic more than once. Consider the following
example:

+ AskTopic, StopEventList, SuggestedAskTopic [tTrollope, novel]
 [
 '<q>Tell me, aunt, do you really think Anthony Trollope is
 such a great novelist?</q> you ask.\b
 <q>I find his writing infinitely preferable to your idle chatter,</q> she
 replies frostily. ',

 '<q>Seriously, aunt, is Trollope that great a novelist?</q> you ask,
 <q> My English master at school always thought him a bit of a
 second-rate Victorian hack.</q>\b
 <q>Then you evidently went to the wrong school!</q> your aunt
 declares, bridling visibly. ',

 'It might be wise to leave that topic alone, before you cause any
 further offence. '
]
 name = 'Anthony Trollope'

230

 timesToSuggest = 2
 isConversational = (!curiositySatisfied)
;

Here it seems sensible to change timesToSuggest to 2, since there are two potentially

interesting responses. There’s no point in suggesting this topic for the third time,
however, since the third response is simply a way of saying “this topic is exhausted”.
At the same time it seems a good idea to define isConversational to return nil once

the final response is reached (which is also when curiosity is satisfied), since this third
response is indeed not conversational: it doesn’t represent a conversational exchange,
it simply tells the player why no further conversational exchange on that topic should
take place. The practical effect of this is that asking Aunt Mavis about Trollope for the
third time won’t trigger greeting protocols (which we’ll explain just below), which
aren’t appropriate when no conversation takes place; in essence, we want to avoid
this kind of thing:

>ask aunt about trollope
“Hello there, Aunt!” you declare enthusiastically.

“Oh, it’s you again,” she replies without enthusiasm.

It might be wise to leave that topic alone, before you cause any further offence.

One further refinement is the use of SuggestedTopics with AltTopics. Normally, an
AltTopic would be regarded as distinct from its parent topic from the point of view of
topic suggestions. Consider the following example:

+ AskTopic, SuggestedAskTopic @ring
 "<q>Have you heard anything about a ring – a special ring?</q> you ask.\b
 <q>I've heard talk of a magic gold ring – but it's only talk,</q> he
 replies.
 name = (ring.theName)
;

++ AltTopic, SuggestedAskTopic
 "<q>I've seen a gold ring, and there seemed something quite strange about
 it. Could that be the magic gold ring everyone's talking about?</q>\b
 <q>It's probably just an ordinary gold ring,</q> he tells you.
 name = (ring.theName)
 isActive = me.hasSeen(ring)
;

In this case the ring will be suggested as something to ask about until the player asks
about it once. After the player character has seen the ring, the ring topic suggestion
will once again be displayed until it has been asked about again. If we only wanted the
ring to be suggested once, regardless of whether the player character asks about it
before or after seeing it, we can use the SuggestedTopicTree class. This effectively

makes the entire group of AltTopics, together with its parent Topic Entry, into a single

231

suggestion. We use SuggestedTopicTree by mixing it in with the class list of the

parent Topic Entry, like this:

+ AskTopic, SuggestedTopicTree, SuggestedAskTopic @ring
 "<q>Have you heard anything about a ring – a special ring?</q> you ask.\b
 <q>I've heard talk of a magic gold ring – but it's only talk,</q> he
 replies.
 name = (ring.theName)
;

++ AltTopic
 "<q>I've seen a gold ring, and there seemed something quite strange about
 it. Could that be the magic gold ring everyone's talking about?</q>\b
 <q>It's probably just an ordinary gold ring,</q> he tells you.
 isActive = me.hasSeen(ring)
;

SuggestedTopics are easy enough to use (provide we remember to define their name

property, which it’s very easy to forget to do); what’s more difficult is to decide which
topics to suggest. If we’ve defined a large number of Topic Entries, perhaps to cover
all the things our beta-testers tried to converse with our NPCs about, making all of
them SuggestedTopics would probably be overwhelming for our players.
SuggestedTopics can be an aid to players, but they can also become a hindrance if
they suggest a huge list of topics players think they have to work through. It’s often
best, then, to focus on suggesting only those topics that are most essential to the
plot, whether through providing information for solving puzzles or in terms of having
particularly interesting responses.

14.6 Hello and Goodbye – Greeting Protocols

In real life, people don’t generally leap straight into the middle of a conversation and
then break it off arbitrarily; but in Interactive Fiction conversations can all too easily
be like that. TADS 3 tries to avoid this by implementing a scheme of greeting
protocols. Not only does this make it possible to begin and end a conversation by
saying hello and goodbye in response to explicit player commands, it allows these
greeting (and farewell) protocols to be triggered implicitly whenever the player
character starts and ends a conversation with an NPC.

For this to work, we need to set up a pair of ActorStates for the NPC to switch
between as the conversation begins and ends. One of these must be a
ConversationReadyState, and the other an InConversationState. The NPC starts

off in the ConversationReadyState. When the player character addresses a greeting

or any other conversation to the NPC, the NPC switches to the InConversationState,

and any greeting message we have defined is displayed. When the conversation
comes to an end for whatever reason (and there are several possible reasons) the
NPC reverts back to the ConversationReadyState (unless we define some other state

for the NPC to change to).

232

The InConversationState that a ConversationReadyState switches to is defined in

its inConvState property; otherwise a ConversationReadyState is defined using

more or less the same properties as we’d use for an ordinary ActorState.

InConversationState also inherits the standard methods and properties of

ActorState, but also defines a few new ones and overrides some of those that it

inherits:

● attentionSpan – this is the number of turns the NPC will remain in this

InConversationState before becoming bored waiting for the player character to
speak (if the player fails to enter any conversational commands for that number
of turns). The default value is 4, but we can easily override that if we want our
NPC to have a shorter or longer attentionSpan. If we want out NPC to have an
infinite attentionSpan when in this state (i.e., the conversation will never be
ended on account of the NPC’s boredom), we should set this property to nil.

● nextState – the ActorState to switch to when the conversation is concluded. By

default this is the value of the lastState property, which is automatically set to

the value of the ActorState the NPC was previously in (provided it was a
ConversationReadyState) before switching to this state. By default, then, at the
end of the conversation the NPC will switch back to the ConversationReadyState
it was in before.

Rather than having to set the inConvState property on a ConversationReadyState

explicitly, we can locate the ConversationReadyState within the InConversationState
with which we wish to associate it in order to have the library make the association for
us; this also makes it a bit easier to see the pairing of the states in the code; for
example:

bob: Person 'tall thin man/bob*men' 'Bob'
 "He's a tall, thin man. "
 isHim = true
 isProperName = true
;

+ bobTalking: InConversationState
 attentionSpan = 5
 specialDesc = "Bob is standing by the shop window, waiting for you to
 speak. "
 stateDesc = "He's waiting for you to speak. "
;

++ bobLooking: ConversationReadyState
 isInitState = true
 commonDesc = " standing in the street, peering into a shop window. "
 specialDesc = "Bob is <<commonDesc>>"
 stateDesc = "He's <<commonDesc>>"
;

Note that in this example, commonDesc isn’t a standard library property, it’s simply a

233

custom property we’ve defined here to avoid having to type the same text for the
specialDesc and stateDesc properties.

The next stage is to define some more Topic Entries to make Bob say Hello and
Goodbye at the appropriate moments. To do this we can use one or more of the
following Topic Entry classes:

● HelloTopic – A response to an explicit greeting; also used for an implicit

greeting response if no ImpHelloTopic has been defined.

● ActorHelloTopic – The greeting when an NPC initiates the conversation (see

below).

● ImpHelloTopic – response to an implicit greeting

● ByeTopic – A response to an explicit farewell; also used for an implicit farewell

response if no implicit response has been defined.

● ImpByeTopic – response to an implicit farewell if the relevant more specialized

implicit farewell responses (one of the next three classes) hasn’t been defined.

● BoredByeTopic – an implicit farewell response used when the NPC becomes

bored waiting for the player character to speak (i.e. the NPC’s attentionSpan
has been exceeded)

● LeaveByeTopic – an implicit farewell response used when the player character

terminates the conversation by leaving the vicinity

● ActorByeTopic – a farewell response for the case in which the NPC decides to

terminate the conversation.

● HelloGoodbyeTopic – response to either HELLO or GOODBYE

An explicit greeting or farewell is one in which the player explicitly types a command
such as talk to bob or bob, hello or bye. An implicit greeting is one triggered by the
player issuing a conversational command (such as ask bob about shop) without first
issuing an explicit greeting. An implicit farewell is one triggered by ending the
conversation other than by an explicit bye or say goodbye command (or the like).

To make the actor terminate the conversation we can simply call endConversation()

on the actor object, e.g.:

bob.endConversation();

All these various HelloTopics and ByeTopics should usually be located in the
ConversationReadyState (except for ActorHelloTopic which is really only useful in a
ConvNode). The Topic Entries relating to the ongoing conversation should go in the
InConversationState. So, to expand our previous example, we might have:

bob: Person 'tall thin man/bob*men' 'Bob'
 "He's a tall, thin man. "
 isHim = true

234

 isProperName = true
;

+ bobTalking: InConversationState
 attentionSpan = 5
 specialDesc = "Bob is standing by the shop window, waiting for you to
 speak. "
 stateDesc = "He's waiting for you to speak. "
;

++ bobLooking: ConversationReadyState
 isInitState = true
 commonDesc = " standing in the street, peering into a shop window. "
 specialDesc = "Bob is <<commonDesc>>"
 stateDesc = "He's <<commonDesc>>"
;

+++ HelloTopic, StopEventList
 [
 '<q>Hello, there!</q> you say.\b
 <q>Hi!</q> Bob replies, turning to you with a smile. ',

 '<q>Hello, again,</q> you greet him.\b
 <q>Yes?</q> he replies, turning back to you. '
]
;

+++ ByeTopic
 "<q>Well, cheerio then!</q> you say.\b
 <q>'Bye for now,</q> Bob replies, turning back to the shop window.
;

+++ BoredByeTopic
 "Bob gives up waiting for you to speak and turns back to the shop window. "
;

+++ LeaveByeTopic
 "Bob watches you walk away, then turns back to the shop window. ";
;

+++ ActorByeTopic
 "<q>Goodness! Is that the time?</q> Bob declares, glancing at his watch,
 <q>I'd best be going! Goodbye!</q>\b
 So saying, he turns away and hurries off down the street. "
;

++ AskTopic @bob
 "<q>How are you today?</q> you ask.\b
 <q>Fine, just fine,</q> he assures you. "
;

Note that this final TopicEntry is back inside the InConversationState, where all our
regular Topic Entries specific to this InConversationState should go.

235

14.7 Conversation Nodes

There come points in a conversation when a particular set of responses become
appropriate that wasn’t appropriate before, and soon won’t be appropriate again.
Generally this happens when the other party to the conversation asks a question, or
else makes a statement that demands (or invites) a particular type of response. If Bob
asks “Would you like me to show you to the lighthouse?” it becomes relevant to reply
yes or no, although neither of those responses would be appropriate if interjected
into some random point in the conversation, and their significance would be somewhat
altered if offered in response to a different question such as “Are you sleeping with my
wife?”.

To model such points in a conversation TADS 3 uses Conversation Nodes. These are
objects of the ConvNode class. A ConvNode is a little like an ActorState or TopicGroup

in that we can put a number of Topic Entries in it, but it is also a little different in
function. We can also use one type of Topic Entry in a ConvNode that we can’t use
elsewhere: a SpecialTopic. There are also a couple of TopicEntry classes we can use

elsewhere, but that are most likely to be useful in ConvNodes: YesTopic and NoTopic,

which respond to yes and no respectively. If you want “yes” or “no” to be suggested
as possible responses you can add SuggestedYesTopic and SuggestedNoTopic to the

class list, as with other SuggestedTopic types.

At its simplest, the definition of a ConvNode object can be very simple indeed:

+ ConvNode
 name = 'node-name'
;

This can be made even more compact using the ConvNode template:

+ ConvNode 'node-name';

Here 'node-name' can be any string we like (so long as it doesn’t contain the
character '>'), but it must be unique among the names we give the ConvNodes for
any particular actor. Following the ConvNode, and located within it, we put the Topic
Entries that are relevant when the ConvNode is active:

+ ConvNode 'lighthouse';

++ YesTopic, SuggestedYesTopic
 "<q>Yes, I would like you to show me the lighthouse,</q> you say.\b
 <q>Right; I can't take you there now. Come back and meet me here at six,</q>
 he tells you. "
;

++ NoTopic, SuggestedNoTopic
 "<q>No, I've been warned that the lighthouse is not a good place to visit,</q>
 you reply.\b
 <q>Very well,</q> he shrugs. "
;

236

ConvNodes can be more complicated that this, but we’ll look at the complications
shortly. The next question to address is how we get the conversation into a particular
ConvNode. There are basically four ways:

● We can call setConvNode(node) on the Actor object.

● We can call setConvNodeReason(node, reason) on the Actor object.

● We can use a <.convnode node-name> tag in the response of a Topic Entry.

● We can call initiateConversation(state, node) on the Actor object.

In setConvNode(node), setConvNodeReason(node, reason) and

initiateConversation(state, node), the node parameter can be either the node

object’s identifier (if it’s not an anonymous object) or the string assigned to its name
property. For example, if we were wanting to switch to a ConvNode defined like this:

myNode: ConvNode 'node-name';

The node parameter could be specified either as myNode or as 'node-name'. Since

ConvNodes tend to be anonymous objects the second is likely to be more common.

The second way of switching to a ConvNode, using the <.convnode > tag, is typically

used like this:

++ AskTopic @lighthouse
 "<q>What's this I hear about the lighthouse?</q> you ask.\b
 <q>It's easier to explain if you see it for yourself,</q> he replies.
 <q>Would you like me to show you the lighthouse?</q><.convnode lighthouse> "
;

In this case, when we enter the ConvNode, the game has just displayed the question
to which yes or no (the responses defined in the ConvNode) are the obvious possible
answers.

The third way of entering a ConvNode, by calling initiateConversation(state,

node) on the actor; state is either nil or the ActorState we want the actor to switch

to. If it’s nil, the actor either remains in its current ActorState or, if that ActorState is
a ConversationReadyState, the actor will switch to the related InConversationState.
We’d normally use this to get an NPC to start a conversation (although we can also
use it to make an NPC steer an existing conversation in a new direction). So, for
example, we could write:

bobStanding: ConversationReadyState
 specialDesc = "Bob is standing in the street, looking in a shop window. "
 afterTravel(traveler, connector)
 {
 inherited(traveler, connector);
 if(traveler == me)
 bob.initiateConversation(nil, 'lighthouse');
 }
;

237

If we enter the ConvNode in this fashion, there has been no previous conversation to
which the player character might respond. In this case we can supply it in the
npcGreetingMsg property of the ConvNode:

+ ConvNode 'lighthouse'
 npcGreetingMsg = "Seeing you approach, Bob turns to you and asks, <q>Hello,
 there! I hear you've been asking about the lighthouse. Would you like
 me to take you there?</q>"
;

If we thought we might want to enter this ConvNode more than once, we might want
to vary the message that’s displayed. We can do that by defining the
npcGreetingList property instead, and attaching an EventList object to it:

+ ConvNode 'lighthouse'
 npcGreetingList: StopEventList
 {
 [
 'Seeing you approach, Bob turns to you and asks, <q>Hello,
 there! I hear you\'ve been asking about the lighthouse. Would you like
 me to take you there?</q> ',

 'Bob looks up at your approach and says, <q>Ah, you\'re back. Shall we
 go to the lighthouse now? </q>'
]
 }
;

Note that one can get much the same effect by defining an ActorHelloTopic inside a
ConvNode (with or without a list). If we define both an npcGreetingMsg (or
npcGreetingList) and an ActorHelloTopic, the greeting from the npcGreetingList will be
shown first, followed by that from the ActorHelloTopic.

All the ConvNodes we have seen so far would last only until the player makes some
conversational response. As these examples have been defined, that response could
be any conversational command, not just the yes or no Bob’s question expects. If we
want an NPC to insist on receiving a reply to his question, we have to do quite a bit
more work. First, we have to supply one or more DefaultTopics that will handle all
topics other than those that constitute a reply to the NPC’s question (otherwise the
Topic Entries available in the the NPC’s current ActorState will also be available). Then
we have to prevent Topic Entries from outside the ConvNode from being suggested.
We may also want to prevent the player character from terminating the conversation
(by saying goodbye, or walking way, or waiting for the NPC to become bored); and we
may also want the NPC to keep nudging the player character for an answer if the
player keeps entering non-conversational commands.

We’ll illustrate all this with an example, and then explain the properties and methods
involved:

+ ConvNode 'lighthouse'
 npcGreetingList: StopEventList
 {

238

 [
 'Seeing you approach, Bob turns to you and asks, <q>Hello,
 there! I hear you\'ve been asking about the lighthouse. Would you like
 me to take you there?</q> ',

 'Bob looks up at your approach and says, <q>Are, you\'re back. Shall we
 go to the lighthouse now? </q>'
]
 }

 npcContinueList: ShuffledEventList
 {
 [
 '<q>I asked you a question,</q> Bob reminds you. <q>Do you want me to
 show you the lighthouse?</q> ',

 '<q>I didn\'t think I\'d asked a particularly difficult question,</q>
 Bob remarks. <q>Do you want me to show you the lighthouse or don\'t
 you? A simple yes or no will do!</q> ',

 '<q>I\'m still waiting for your answer,</q> says Bob. <q>Do you want
 me to take you to the lighthouse, yes or no?</q> '
]
 eventPercent = 67
 }

 limitSuggestions = true

 canEndConversation(actor, reason)
 {
 switch(reason)
 {
 case endConvBye:
 "<q><q>Goodbye</q> isn't an answer,</q> Bob complains. <q>I asked
 if you wanted me to show you the lighthouse; do you?</q>";
 return blockEndConv;

 case endConvTravel:
 "<q>Hey, don't walk away when I'm talking to you!</q> Bob complains.
 <q>I asked you a question! Do you want me to take you to the
 lighthouse?</q> ";
 return blockEndConv;

 default:
 return nil;
 }
 }
;

++ YesTopic, SuggestedYesTopic
 "<q>Yes, I would like you to show me the lighthouse,</q> you say.\b
 <q>Right; I can't take you there now. Come back and meet me here at six,</q>
 he tells you. "
;

++ NoTopic, SuggestedNoTopic
 "<q>No, I've been warned that the lighthouse is not a good place to visit,</q>
 you reply.\b
 <q>Very well,</q> he shrugs. "
;

239

++ DefaultAnyTopic, ShuffledEventList
 [
 '<q>Don\'t try to change the subject, I asked you if you want me to
 show you the lighthouse,</q> Bob replies. <q>So, do you?</q><.convstay> ',

 '<q>That doesn\'t answer my question,</q> he complains. <q>Do you want
 me to take you to the lighthouse?</q><.convstay> ',

 '<q>I asked you if you wanted me to show you the lighthouse,</q> he
 reminds you. <q>Do you?</q><.convstay> '
]
;

Note the use of the <.convstay> tags in the DefaultAnyTopic. By default any

conversational command will take us out of the current ConvNode. The <.convstay>

tag keeps the current ConvNode active, which is what we want all these default
responses to do. The alternative would be to change the default behaviour of the
ConvNode by changing its isSticky property to true; then a conversational command

won’t take us out of the ConvNode unless it contains an <.convnode> tag. We could

then use <.convode node> to switch to another ConvNode or <.convnode nil> to

leave the ConvNode without switching to another (not because nil has any special
meaning in this context, but because there’s unlikely to be a ConvNode called nil and
thus, failing to find such a ConvNode, the ConvNode switching mechanism will switch
to no node at all).

The methods and properties of ConvNode we might be most interested in making use
of include:

● isSticky – if this is true then a conversational command won’t cause the actor

to switch out of this node unless the response includes an explicit <.convnode>
tag. If it is nil we need to use explicit <.convstay> tags in responses to stay in
this ConvNode.

● name – a single-quoted string that uniquely identifies this ConvNode among the

ConvNodes for the same actor. We normally assign this property via the
ConvNode template.

● npcContinueList – if supplied, this should be assigned an EventList object that

displays messages in which the actor prompts the player character to respond
to his/her question.

● npcContinueMsg – if supplied, this is an alternative to npcContinueList (we

shouldn’t define both properties); this would be a double-quoted string
displaying a message the actor uses to prompt the player character to answer
the question on each turn that the player issues a non-conversational
command.

● npcGreetingList – if supplied, this should be assigned an EventList object that

displays a series of messages representing the NPC initiating the conversation

240

(generally by posing a question to which one of the TopicEntry responses
defined in the ConvNode will be the answer).

● npcGreetingMsg – if supplied, a double-quoted string that displays the

message representing the NPC initiating the conversation (generally by posing a
question to which one of the TopicEntry responses defined in the ConvNode will
be the answer). This is an alternative to npcGreetingList.

● autoShowTopics() - if true then a list of suggested topics will be shown on

entering this node. Note that this method is already defined to show suggested
topics if the ConvNode contains any SpecialTopics (which we’ll explain below).
This is a sensible default, but we may want to override it in particular
circumstances.

● limitSuggestions – if this is set to true then only SuggestedTopics defined

within the ConvNode will be listed in response to a topics command or to
suggested topics being listed for any other reason. This should be used when
we use DefaultTopics to trap any conversational commands not specifically
handled by ConvNode, in which case Topic Entries outside the ConvNode (in the
current ActorState or Actor) will not be reachable. We can also use this property
on ActorStates for a similar purpose (when SuggestedTopics defined on the
Actor are made unreachable by the DefaultTopics in the ActorState).

● canEndConversation(actor, reason) – determines whether or not the player

character is allowed to end the conversation when we’re in this ConvNode.
Return true to allow the conversation to end, or nil or blockEndConv to prevent

it from ending. We use the last of these values to suppress displaying the
npcContinueMsg or an item from the npcContinueList on the same turn;
normally canEndConversation() should display a message possibly in the form
of an objection from the NPC, explaining why the conversation cannot be
ended; if we’ve already displayed such a message we don’t also to see one of
the NPC’s nag messages appear on the same turn. The reason parameter is one
of enums endConvBye, encConvTravel or endConvBoredom (the player has tried
to say goodbye, the player has issued a movement command, or the NPC has
exceeded its boredom threshold).

● noteActive() - called when the actor enters this ConvNode; by default this

method schedules a listing of suggested topics if autoShowTopics() returns true.

● noteActiveReason(reason) – called when the actor enters this ConvNode; by

default this method simply calls noteActive(). The reason parameter can either
be nil or a single-quoted string passed from the reason parameter of
setConvNodeReason() called on the Actor. See the Library Reference Manual for
the reason codes used by the standard library.

● noteLeaving() - called when the actor is about to leave this ConvNode; by

default this doesn’t do anything.

241

For further details, look up ConvNode in the Library Reference Manual.

The examples we have seen so far have used YesTopic and NoTopic, but we can use
any of the kinds of Topic Entry we like in a ConvNode. We can also use a further kind
of Topic Entry that’s only available in a ConvNode, a SpecialTopic. A SpecialTopic

in principle allows us to define just about any kind of conversational response we like
in a ConvNode, allowing a player character to give rather more nuanced responses to
what an NPC has just said than ask, tell, yes, or no normally allows. In practice there
are of course a number of restrictions, but SpecialTopics certainly allow us greatly to
extend the range of what the player character can reply.

A SpecialTopic can match the player’s input in one of two ways:

1. Through its keywordList property; or

2. Through its matchPat property.

With the second of these, we can define matchPat as a regular expression which the

player’s input must match if this SpecialTopic is to match. This provides maximum
flexibility, but may be more flexibility than we often need, especially if we’re not that
confident at writing regular expressions! In either case, we can use the first method
instead (which is probably the method more commonly used when defining
SpeciialTopics).

This first method is to define a list of keywords (as a list of single-quoted strings); the
SpecialTopic will be matched if each word in the player’s input matches one of the
keywords. But if more than one SpecialTopic in the current ConvNode could match the
player’s input, then all the matches will be ignored (in other words, the player’s input
must uniquely identify one SpecialTopic for a match to take place).

For example, suppose we wanted one possible response in a ConvNode to be tell the
truth. We could define the keywordList as ['tell', 'the', 'truth']. This would then be
matched if the player typed tell the truth or tell truth or truth or perhaps even tell
or the (if these words by themselves are not in the keywordList of any other
SpecialTopic), but it would not match tell him the truth or tell a truth or tell the
truth reliably or anything else that contains one or more words not in the
keywordList.

Since a player can hardly be expected to guess the wording of a SpecialTopic, all
SpecialTopics are automatically SuggestedTopics (in fact they’re SuggestedTopicTrees,
so that the same suggestion will apply to any AltTopics they contain). This means that
we must remember to define the name property for every SpecialTopic. In the previous

example, we would define the name property as 'tell the truth'.

You might think that faced with a prompt that said something like:

You could lie, be evasive, or tell the truth
>

242

Players would realize that they’re mean to type one of these three options. Not so.
You can guarantee that at least some players will try everything except the wording
you’ve supplied in plain sight, and will then complain like mad that your game is
buggy because it didn’t understand what they typed and they couldn’t guess what
they were meant to type. There’s a limit to how far you can guard yourself against
such pervasive player perversity, but you can guard yourself to some extent by
thinking of some of the possible alternative phrasing people might try, such as tell
him the truth or tell bob the truth or be truthful and add additional words to your
keywordList accordingly (good beta-testers can also help with this problem, of
course). Thus our sample SpecialTopic might look like this:

++ SpecialTopic
 name = 'tell the truth'
 keywordList = ['tell', 'him', 'bob', 'the', 'truth', 'be', 'truthful']
 topicResponse = "<q>Well, to be honest,</q> you say, <q>I've been having
 an affair with your wife for the last ten years.</q>\b
 <q>Thank goodness!</q> he declares. <q>Now I've got an excellent reason
 to divorce the wretched woman!</q>"
;

Once again, this can be defined more concisely using a template:

++ SpecialTopic 'tell the truth'
 ['tell', 'him', 'bob', 'the', 'truth', 'be', 'truthful']
 "<q>Well, to be honest,</q> you say, <q>I've been having
 an affair with your wife for the last ten years.</q>\b
 <q>Thank goodness!</q> he declares. <q>Now I've got an excellent reason
 to divorce the wretched woman!</q>"
;

Just to underline the point, SpecialTopics can only be used in ConvNodes. If you want
something like SpecialTopic functionality elsewhere you could try downloading the
SayQuery extensions from the IF-Archive.

Finally, ConvNodes themselves can be located either in the associated Actor or in one
of that Actor’s ActorStates. It’s always okay to put a ConvNode directly in the Actor,
and that’s probably the best option.

14.8 NPC Agendas

Most of what we have seen so far has been about how we can make NPCs react to
what the player character is doing. But our NPCs may feel more realistic if we can
make them pursue their own agendas. We can do this with the AgendaItem class. By

defining AgendaItems for our NPCs we can have them carry out certain actions as and
when certain conditions become true, for example:

+ bobWanderAgenda: AgendaItem
 isReady = (bob.curState == bobWalking)
 initiallyActive = true
 agendaOrder = 10
 routeList = [highStreet, northStreet, southPark, northPark]

243

 invokeItem()
{

 local idx = routeList.indexOf(bob.getOutermostRoom);
 if(idx && idx < routeList.length())
 {
 local dest = routeList[++idx];
 bob.scriptedTravelTo(dest);
 if(idx >= routeList.length())
 isDone = true;
 }
 }
;

+ bobAngryAgenda: AgendaItem
isReady = (bob.canSee(mavis))
invokeItem()

 {
 "<q>You hypocritical old woman!</q> Bob storms at Mavis. <q>You sit
 there like some stern old maiden aunt, but I know just what you
 were in your youth – you were a <i>trollope</i>! ";

 isDone = true;
 }
;

The first of these, bobWanderAgenda, is initiallyActive, so it will fire as soon as its

isReady property becomes true (which is when Bob enters the bobWalking state).

While this AgendaItem is ready, its invokeItem() method will be called each turn until

its isDone property becomes true, whereupon the AgendaItem will be removed from

Bob’s agendaList. In this example the invokeItem() method makes Bob travel one

step of the way through the route defined in the routeList property (a custom

property we have defined specially for the purpose). The bobAngryAgenda is not

initially active, however, so it won’t do anything at all until we add it to Bob’s
agendaList, which we can do by calling bob.addToAgenda(bobAngryAgenda). Once

we’ve done this, bobAngryAgenda’s invokeItem() method will be called as soon as

Bob can see Mavis, with one proviso: only one AgendaItem can fire for a given actor
on any one term, so if Bob should happen upon Mavis while bobWanderAgenda is
talking Bob on his walk, Bob will simply walk on and ignore Mavis. The reason is that
we have given bobWanderAgenda an agendaOrder of 10, much lower than the default

value of 100, and that in cases where more than one AgendaItem is ready on a single
term, the one with the lowest agendaOrder is the one that’s used.

There’s one further point to bear in mind here: bobAngryAgenda displays some text in
its invokeItem() method, but this text won’t actually be displayed on the screen

unless the player character can see Bob at the time when this invokeItem() method

is invoked (although everything in the method apart from the displaying of text will be
carried out as usual). Normally, this is just what we want, since it means we don’t
have to worry about messages appearing which describe what invisible actors are
doing off-stage. Every now and again, however, it can produce puzzling behaviour,
especially if the NPC in question moves in or out of scope during the turn in question.

244

Not only is output from the invokeItem() method suppressed when the

corresponding actor is out of sight, but so is that from any method or function called
by invokeItem(), and this can sometimes be even more puzzling when we don’t get

the output we’re expecting.

If for any reason we’re not seeing the output from an AgendaItem we want to see,
this is very likely to be the reason. If we want to override the library’s output
suppression in such a case the way to do it is with the callWithSenseContext()

function (for the details of which, see the Library Reference Manual). To force output
of text to the screen no matter what the sense context, use nil for the first two
arguments of callWithSenseContext() and an anonymous function to display the

text as the third argument, for example:

callWithSenseContext(nil, nil, {: "This will display no matter what the
 player character can or cannot see. " });

To summarize: to make it possible for an AgendaItem to be activated it either needs
to start out active (with initiallyActive set to true) or else be added to its actor’s

agendaList by calling its actor’s addToAgenda(item) method (where item is the

AgendaItem in question). AgendaItems should be located directly in the actor to which
they relate. The most commonly important properties and methods of AgendaItem
are:

● agendaOrder – the priority of this AgendaItem; the lower the agendaOrder, the

higher the priority; the default value is 100.

● initiallyActive – set to true if this AgendaItem should be added to its actor’s

agendaList at the start of the game.

● isDone – set this to true when the AgendaItem has finished doing whatever it

needs to do; the AgendaItem will then be removed from its actor’s agendaList.

● isReady – this should become true when we want the invokeItem() method to

be called. Usually we define this as a method or expression that becomes true
when the appropriate conditions obtain, but we could also set its value from an
external method.

● getActor() - returns the actor with which this AgendaItem is associated.

● invokeItem() - this method should contain the code we want to execute once

isReady becomes true.

● resetItem() - this method is automatically called when we add this item to its

actor’s agendaList; its function is to reset isDone to nil provided isDone is a
simple true/nil value and not code that returns a value; the purpose is to allow
us to reuse an AgendaItem without having to reset the isDone flag explicitly.

245

There are also two special kinds of AgendaItem we can use: DelayedAgendaItem and

ConvAgendaItem. A DelayedAgendaItem is simply an AgendaItem that becomes ready

so many turns in the future. We can add a DelayedAgendaItem to an actor’s
agendaList and set the delay at the same time by calling:

actor.addToAgenda(myDelayedAgendaItem.setDelay(n));

Where n is the number of turns in the future at which we want myDelayedAgendaItem

to become ready. If we want to impose an additional condition, e.g. we want Bob to
be able to see Mavis as well, we must combine this with inherited:

+ bobDelayedAngerAgenda: DelayedAgendaItem
 isReady = (inherited && bob.canSee(mavis))
 ...
;

A ConvAgendaItem is one that becomes ready when (a) the actor can speak to the

player character and (b) the player character hasn’t conversed with the actor this
turn. We can use this to allow an actor to pursue his or her own conversational
agenda once he or she gets a chance to get a word in edgeways. If we want the actor
to try to converse with some other NPC, we can change the otherActor property of

the ConvAgendaItem to that other NPC (it’s the player character by default). If we
want an AgendaItem to be both a ConvAgendaItem and a DelayedAgendaItem, we
can just list both of these in the class list, e.g.:

+ bobDelayedAngerAgenda: DelayedAgendaItem, ConvAgendaItem
 isReady = (inherited && bob.canSee(mavis))
 ...
;

We’ll say a bit more about ConvAgendaItem in the next section; in the meantime, for
more information about AgendaItems look up AgendaItem in the Library Reference
Manual.

14.9 Making NPCs Initiate Conversation

We’ve now met a number of ways in which we can make an NPC initiate conversation.
We could just use a Fuse or Daemon and have it display the text of what we want the
NPC to say. Or we can call the actor’s initiateConversation() method from

somewhere. Or we can use an AgendaItem, or better, a ConvAgendaItem. Or we can
use a mechanism we’ve not yet met, namely calling the actor’s initiateTopic(obj)

method.

Often, the best place to start will be with a ConvAgendaItem, since this already
checks that the NPC is in a position to converse with the player character and that
they haven’t already conversed on that turn. If we want to build in a delay we can
simply add DelayedAgendaItem to the class list, as we’ve already seen. If we want to

246

add further conditions to when the NPC should make his or her conversational gambit
we can either do so by defining isReady = (inherited && ourExtraConditions) or

by waiting until we’re ready before adding the ConvAgendaItem to the NPC’s
agendaList. The question is then what to put in the ConvAgendaItem’s invokeItem()

method. There are basically two main options. The first is simply to display some text;
the second is to use initiateConversation().

The first is the one to use if we just want the NPC to make a remark which doesn’t
require any particular response on the part of the player character. For example:

+ bobLighthouseAgenda: ConvAgendaItem
 isReady = (inherited && bob.canSee(lighthouse))
 invokeItem()
 {
 "<q>Look! There's the lighthouse!</q> Bob declares. ";
 isDone = true
 }
;

This works best when we don’t have to worry about switching the actor between a
ConversationReadyState and InConversationState (in the above example Bob is more
likely to be in an AccompanyingState, since that’s the most likely way in which he and
the player character will come upon the lighthouse together).

The main alternative is to call the actor’s initiateConversation() method from a

ConvAgendaItem. There may be a number of situations when we want to do this, in
particular:

1. The NPC and the player character are not currently conversing, and we want
the NPC to start a conversation by making some remark.

2. The NPC and the player character are not currently conversing, and we want
the NPC to start a conversation by asking a question to which the player
character either could or must reply.

3. The NPC and the player character are currently conversing, and we want the
NPC to change the subject by asking a question to which the player character
either could or must reply.

In case 1 we could simply call initiateConversation() with two nil arguments:

+ talkAgenda: ConvAgendaItem
 invokeItem()
 {
 getActor.initiateConversation(nil, nil);
 "<q>Blah, blah blah!</q>";
 isDone = true;
 }
;

When called with two nil arguments initiateConversation won’t trigger a ConvNode,
but it will cause a switch from a ConversationReadyState to an InConversationState,

247

and it will register that a conversation between the player character and the NPC is
now in progress; otherwise it will leave the NPC in the same state. This means that it
will in fact work equally well whether or not the NPC and the player character were
already conversing.

By the same logic, we scarcely need to distinguish between cases 2 and 3. We can
either call initiateConversation(nil, newNode) or

initiateConversation(newState, newNode), depending on whether or not we want

the NPC to switch to a specific ActorState. Either way we can rely on newNode’s
npcGreetingMsg or npcGreetingList to supply the NPC’s question, so we can just

write something like:

+ questionAgenda: ConvAgendaItem
 invokeItem()
 {
 getActor.initiateConversation(inquisitiveState, 'new-query');

 isDone = true;
 }
;

There’s one further way we can make NPCs take some conversational initiative, and
that’s through InitiateTopic objects. An InitiateTopic is a kind of TopicEntry, and

we can use it just like any other kind of TopicEntry. The difference is that an
InitiateTopic is not triggered by any player command, but by the actor’s

initiateTopic(obj) method, which will trigger the InitiateTopic (if one exists)

whose matchObj is obj (or contains obj in its matchObj list). For example, suppose we

have an NPC in an AccompanyingState who comments on some of the locations as she
visits them for the first time. We could implement this as follows:

+ sallyFollowing: AccompanyingState
 specialDesc = "Sally is at your side. "
 arrivingTurn() { sally.initiateTopic(sally.getOutermostRoom); }
;

++ InitiateTopic, EventList @forest
 [
 '<q>What a gloomy place!</q> Sally declares. '
]
;

++ InitiateTopic, EventList @meadow
 [
 '<q>Look at the tower, over there!</q> Sally tells you, pointing to
 the north. '
]
;

Here we’ve made the InitiateTopics EventLists as well so that Sally’s comments will
only be displayed the first time she enters each location alongside the player
character.

248

14.10 Giving Orders to NPCs

In Interactive Fiction it’s common for players to be able to give commands to NPCs,
like bob, go north or mavis, eat the cake. By default TADS 3 will respond to all
such commands with “Bob refuses your request” (or whichever NPC it is that refuses
your request). We should now give a little thought to how we can change this, either
to make an NPC obey a command, or to customize his or her refusal.

The method that determines whether an NPC will obey or refuse a command is
obeyCommand(issuingActor, action), where action is the action that issuingActor

wants the NPC to perform. This is called on the NPC Actor object, which by default
calls obeyCommand(issuingActor, action) on the Actor’s current ActorState. By

default the result is to return nil, which causes the command to be rejected. One way
to make an actor obey a command is to override this method so that it returns true
(at least for the action in question); to make an actor jump when we order him to:

modify ActorState
 obeyCommand(issuingActor, action)
 {
 if(action.ofKind(JumpAction))
 return true;
 return inherited(issuingActor, action);
 }
;

There’s one global tweak we might want to make on the Actor class, regardless of
what else we want to do with NPC commands. The standard library treats mavis,
save or bob, restart or sally, quit just like any other commands targeted at NPCs,
but save, restart, quit and a handful of other commands of this sort are really meta-
commands, not commands relating to the game state, and it simply makes no sense
to direct them to NPCs. In a game in which all commands targeted at NPCs are
refused with the default message, this may not matter, but as soon as we start
customizing responses or allowing some commands to be obeyed, we may want to nip
these meta-commands in the bud, rejecting them all with a special message. Since all
such meta-command actions will belong to the SystemAction class, which shouldn’t
contain any other kinds of action, this is relatively easy to trap. We can simply define
this somewhere in our game:

modify Actor
 obeyCommand(issuingActor, action)
 {
 if(action.ofKind(SystemAction))
 {
 libMessages.systemActionToNPC();
 return nil;
 }

 return inherited(issuingActor, action);
 }
;

249

We could, of course, use a different message here if we wanted to. We can also
customise the message an actor uses to refuse a standard command by customizing
the Actor’s defaultCommandResponse(fromActor, topic) method (where topic is the

action the Actor is being asked to carry out); for example:

mavis: Person 'old aunt woman/mavis*women' 'Aunt Mavis'
 isHer = true
 isProperName = true
 defaultCommandResponse(fromActor, topic)
 {
 "<q>Don't you tell me what to do, young man!</q> she snaps. ";
 }
;

The obeyCommand() method on ActorState treats a command targeted at the NPC as a

kind of conversational command. We can customize the NPC’s reaction to commands
by defining CommandTopic entries, which work just like other Topic Entries except that

they match on action classes rather than game objects or topics. For example, we
could customize Bob’s response to bob, jump by defining a CommandTopic like this:

+ CommandTopic @JumpAction
 "<q>Jump!</q> you cry.\b
 <q>No – go jump yourself!</q> he replies. "
;

Alternatively, we could make Bob carry out the command by using a newActorAction()
macro in the topicResponse():

+ CommandTopic @JumpAction
 topicResponse()
 {
 "<q>Jump!</q> you cry.\b";
 newActorAction(bob, Jump);
 }
;

We can also define a DefaultCommandTopic to catch all the commands we haven’t

written specific CommandTopics for; for example, as an alternative to overriding
defaultCommandResponse() on Mavis we could give her a DefaultCommandTopic:

+ DefaultCommandTopic
 "<q>Don't you tell me what to do, young man!</q> she snaps. "
;

Note that we don’t have to override obeyCommand() to use CommandTopics. The full

default behaviour of ActorState.obeyCommand() is to handle the order as a

conversational command (handled by CommandTopics) and then return nil.
Conversely defining CommandTopics has nothing to do with whether or not the
command is obeyed (unless we explicitly make the actor carry out an action with
newActorAction, as in the above example).

250

There is one rather obvious limitation to this mechanism: a CommandTopic matches
on the Action class, but not on any of the objects involved in the command. It doesn’t
provide a ready mechanism for handling mavis, eat cake differently from mavis, eat
table or mavis, eat your hat, let alone distinguishing bob, put the red ball in the
brown box from bob, put the flaming torch in the vat of petrol. If you want to
do be able to do this, then probably the easiest way is to use the TCommand
extension, which can be found in the ../lib/extensions directory of your TADS 3
installation. This would allow you to define TCommandTopic objects like:

+ TCommandTopic @PutInAction
 "<q>Put the red ball in the brown box, would you?</q>\b
 <q>Okay,</q> Bob agrees. "
 matchDobj = redBall
 matchIobj = brownBox
 obeyCommand = true
;

The alternative, if you need to get at the actions involved in the command, is to
inspect action.getResolvedDobjList() and/or action.getResolvedIobjList()

(where action is the action the NPC has been ordered to carry out); this is perfectly
doable, but you may end up reinventing the TCommand wheel.

14.11 NPC Travel

There may be some NPCs who have a good reason for staying right where they are
throughout the course of a our game, but the chances are that at least some of our
NPC will need to move around. We’ve already seen how we can use an
AccompanyingState or a GuidedTourState to make an NPC move around with the
player character, but we may just as likely want some of our NPCs to travel around
independently of the player character.

The first golden rule of NPC Travel is never move an Actor (whether an NPC or the
player character) with moveInto(). The problem is that the library tries to calculate a

containment path between the actor’s current location and the new location, and then
move via the actor via that path, which in the general case can all too easily result in
a run-time error or some other undesired effect. If we want to move an actor around
by authorial fiat that magically transports him, her, or it across the map we should use
moveIntoForTravel(dest) instead (where dest is the destination we want to move

the actor to).

This may not always be our best option, however, since we may more normally want
our NPCs to move around the map in much the same way as the player character
does, rather than having them suddenly vanish from one location and appear in
another. In that case it’s probably easiest to use either scriptedTravelTo(dest) or

make the NPC carry out a TravelVia action on the appropriate TravelConnector (these
are in fact more or less two different ways of doing the same thing).

251

The scriptedTravelTo(dest) method allows us to make an actor travel to a

neighbouring location, so, for example, if Bob is in the east end of the hall and we
want him to move to the west end of the hall, we could call:

bob.scriptedTravelTo(hallWest);

Note, however, that this will only work if Bob starts in a location that’s directly
adjacent to the destination to which we want him to move; if he’s not, the method will
simply do nothing. If we need an NPC to find a path over a longer distance, we should
probably use the pathfind.t extension in the ../lib/extensions folder.

We could use scriptedTravelTo() in an AgendaItem to make an actor travel along a

pre-computed path, for example:

class TravelAgendaItem: AgendaItem
 travelPath = nil
 invokeItem()
 {
 local actor = getActor;
 local path = nilToList(travelPath);
 local loc = actor.getOutermostRoom();
 local idx = path.indexOf(loc);
 if(idx && idx < path.length())
 actor.scriptedTravelTo(path[++idx]);

 if(idx == nil || idx >= path.length())
 isDone = true;
 }
;

For particular instances we could then define travelPath to be a list of adjacent rooms
starting with the initial location and ending with the destination; an NPC following this
TravelAgendaItem should then proceed one step of the journey each turn.

An alternative is to use newActorAction() (or nestedActorAction()) to make an

actor carry out a travel command. For example, if we want to send Bob through the
red door, we could write:

newActorAction(bob, TravelVia, redDoor);

Or, if we simply want to send Bob off to the east, we could use:

newActorAction(bob, East);

The final way to make an actor move around is with its travelTo(dest, connector,

backConnector) method. Here dest is the destination to which we want to send the

actor, connector is the TravelConnector the actor should travel via to get there, and
backConnector is the connector leading back from the the destination to where the
actor is coming from (this is used to describe the actor’s arrival). If we don’t want to
specify the backConnector ourselves, we can get it from:

252

connector.connectorBack(actor.getTraveler(connector), dest)

The fact that travelTo() requires these three parameters may make it the least

convenient method to use. Unlike the last few methods we’ve been looking at it
doesn’t carry out preconditions of travel such as opening closed doors; this is fine if
the actor is meant to be a ghost who can walk through locked doors, but may not
always be ideal in other circumstances. For further details of this and other ways of
moving actors around, see the “NPC Travel” article in the TADS 3 Technical Manual.

In addition to being able to move NPCs around, we may also like to have some control
over how that travel is described. The library provides a number of standard messages
for describing NPCs arriving and departing within sight of the player character, and as
plain vanilla descriptions of NPCs moving around they do well enough. On occasion,
however, we may want something more colourful: “Bob stomps off to the west”, say,
rather than just “Bob leaves to the west.”

To achieve this, we can override one or more of the following methods on the NPC’s
ActorState:

● sayDeparting(conn) – generic message for departing via a TravelConnector

● sayDepartingDir(dir, conn) – directional departure via a RoomConnector

● sayDepartingThroughPassage(conn) – departure via a ThroughPassage or

Door

● sayDepartingViaPath(conn) – departure via a PathPassage

● sayDepartingUpStairs(conn) – departure up a StairwayUp

● sayDepartingDownStairs(conn) – departure via a StairwayDown

There’s also a corresponding set of sayArrivingXXX() methods to describe an actor

arriving via these various kinds of TravelConnector. Which of these methods is used to
generate the message depends on what kind of TravelConnector the NPC is travelling
via. For example, to customize the messages to use when Bob departs in a particular
direction or down a flight of stairs we could write:

+ bobWalking: ActorState
 sayDepartingDir(dir, conn)
 {
 "Bob stomps off to the <<dir.name>>. ";
 }
 sayDepartingDownStairs(conn)
 {
 "Bob runs lightly down <<conn.theName>>. ";
 }
;

For a fuller list (and account) of these methods, look up TravelMessageHandler in the
Library Reference Manual. You should also look up AccompanyingInTravelState where
all these methods are overridden to use sayDeparting(conn), the reason being that

253

this is the message that’s used when the NPC is in the process of accompanying the
player character on his/her travels.

14.12 Afterword

As you’ll have gathered if you’ve read this far, TADS 3 provides a rich set of tools for
programming NPCs, but it may all seem a little overwhelming at first. Once you start
coding your own NPCs it should all start to fall into place, and you’ll soon start to pick
up what class or method you need to use for which job. If in the meantime you need
more guidance on NPCs, there are several places you can look:

1. If you haven’t already done so, you should read the articles on “Creating
Dynamic Characters”, “Choosing a Conversation System” and “Programming
Conversations with NPCs” in the TADS 3 Technical Manual

2. You may well find it helpful to download and use the “TADS 3 Dynamic
Characters Quick Reference”; this attempts to summarize much of the
information in this chapter in a chart that can be printed out on two sides of a
(letter-size or A4) page; it can be obtained from
http://users.ox.ac.uk/~manc0049/TADSGuide/QRefs.zip.

3. You can browse the TADS 3 Reference Manual for the various classes introduced
in this chapter.

4. You can look at Chapter 4 of Getting Started in TADS 3 and follow the way the
two NPCs are developed in that and subsequent chapters.

5. You can attempt the following exercise and then compare your attempt with the
sample game lighthouse.t

Exercise 20: Both the NPC articles in the TADS 3 Technical Manual and several of
those in this chapter refer to a character called Bob who stacks cans and mutters
darkly about a lighthouse and some “troubles”, so try writing a small game based on
that. Here’s some further suggestions: The player character is new to the town and
has just gone into Bob’s shop, where Bob is busily stacking cans and a blonde woman
(let’s call her Sally) is inspecting the clothes on the clothes rack. Sally is too interested
in the clothes to engage a stranger in conversation, but Bob is more talkative. You can
ask him about a number of topics, but if you ask him about the town, he’ll mention
the lighthouse and the troubles, and then clam up on those topics. When Sally hears
Bob mention the troubles she goes outside. When the player character leaves the
shop Sally comes up to him and asks whether he wants her to show him the
lighthouse. The player can reply yes or no or ask why she’s offering. If the player
replies yes, Sally leads the player character to the lighthouse and then invites him to
lead the way inside. On the lowest floor of the lighthouse there’s nothing but an
abandoned storeroom and an abandoned office, which Sally comments on the first
time she follows the player character there. Halfway up a spiral staircase is an oak

http://users.ox.ac.uk/~manc0049/TADSGuide/QRefs.zip

254

door. When the player character goes through the door he meets more than he
bargained for.

When you’ve got as far as this as you want to, compare your version with the
lighthouse.t sample game.

255

15 MultiLocs and Collectives

15.1 MultiLocs

At a stretch we could regard MultiLocs and Collectives as complementary: MultiLocs
cater for one object being in several places at once, while Collectives (and
CollectiveGroups) help deal with multiple objects in the same place. We’ll start with
MultiLocs.

Generally, the whereabouts of an object in a TADS 3 game is defined by its location

property, which would suggest that, like most objects in the real world, an object can
only be in one place at a time. But there are three situations where we really do want
a game object to be in several places at once:

1. The object in question straddles the border of several rooms, such as a fountain
that stands at the centre of a square we’ve implemented as four different
rooms.

2. The object is a distant object (like the sun, the moon, or a faraway mountain)
that’s visible from many different locations.

3. The object is some kind of SenseConnector that needs to be in several

locations at once in order to provide a sensory link between those locations.
We’ll look at this use of MultiLoc more in the next chapter.

For these three situations we can use the MultiLoc class. MultiLoc is a mix-in class

which generally needs to precede one or more Thing-derived classes in any class list.
There are a number of ways in which we can specify which locations a MultiLoc object
is present in:

1. We can simply list its locations in its locationList property; so, for example,

for the fountain at the centre of a square we might define locationList =

[squareNE, squareNW, squareSE, squareSW].

2. We can define its initialLocationClass to be a class of object every member

of which contains the MultiLoc in question. For example, if we were
implementing an object to represent the sun we’d probably define
initialLocationClass = OutdoorRoom. We can refine this further, if we wish,

by overriding the isInitiallyIn(obj) method; for example if we wanted the

sun to appear in every OutdoorRoom except those of the our ForestRoom class
(where the leafy canopy obscures the sun) we could additionally define
isInitiallyIn(obj) { return !obj.ofKind(ForestRoom); }.

3. We can simply define isInitiallyIn(obj) without defining

initialLocationClass; then our isInitiallyIn() method will select locations

256

from every single object defined in the game, not just those objects of the
initialLocationClass class.

4. If none of these methods provided sufficient flexibility, we could override
buildLocationList() to return the list of locations we want (though it’s hard

to think of a case where we’d need to do this).

The two examples we’ve used above might look like this:

sun: MultiLoc, Distant 'bright sun' 'sun'
 "It's too bright to look at for long. "
 initialLocationClass = OutdoorRoom
 isInitiallyIn(obj) { return !obj.ofKind(ForestRoom); }
;

fountain: MultiLoc, Container, Fixture 'ornamental fountain*fountains''fountain'
 "It's in the form of some improbable mythical beast gushing water out
 of an unmentionable orifice. "
 locationList = [squareNE, squareNW, squareSE, squareSW]
;

We’ve made the fountain a Container because we’re envisaging it as the kind of
fountain people could throw coins into. Note that if the player character were to throw
a coin into the fountain, s/he’d be able to retrieve it equally well from any of the four
corners of the square, since the fountain is in all of them.

Note also that although in this example (and in many common uses of MultiLoc) the
locations the MultiLoc is present in are all Rooms, there’s no rule restricting us to
using Rooms; it’s legal to use any Thing-derived object as a MultiLoc location (as it is
for the location of any Thing). For example, if our MultiLoc were a SenseConnector
establishing an aural link between two mobile phones, we could usefully locate it in
the two mobile phones.

Note that while we can use the isIn(loc), isDirectlyIn(loc) and isOrIsIn(loc)

methods to test whether a MultiLoc is in loc (these methods are overridden on
BaseMultiLoc to give sensible results), we can’t determine the location of a MultiLoc by
inspecting its location property, which will simply be nil. Normally this isn’t an issue,

but it could become an issue if we’re writing a routine that’s iterating over a group of
objects, some of which are MultiLocs, and the routine assumes that all the objects
have a valid location. If this is likely to be an issue in our game, one workaround is

to define a location method on MultiLoc (or perhaps BaseMultiLoc) that returns a
usable value, e.g.:

modify MultiLoc
 location()
 {
 /* if our locationList is empty, we don’t have a location */
 if(locationList.length() < 1)
 return nil;

257

 /* if the player character is in one of our locations, we’ll return that */
local loc = locationList.indexWhich({x: gPlayerChar.isIn(x) });

 if(loc != nil)
 return loc;

 /* otherwise return the first object in our locationList */
 return locationList[1];
 }
;

We can’t just return gPlayerChar.location in the second case, because, for

example, the player character might be on chair in a room that’s one of the MultiLocs
locations, and we want to report the MultiLoc’s location as the room rather than the
chair in this case. In any case, particular games might need to use some rather
different algorithm to return a usable location for a MultiLoc, where it’s necessary to
do so; see, for example, the definition of getDropDestination(obj, path) on

MultiLoc, which has to deal with an analogous problem (you may have noticed that
this is one of several TADS library methods that take a ‘path’ parameter which we
usually ignore; MultiLoc objects provide a situation where the ‘path’ parameter can
actually be useful, to help determine where the player is accessing the object from).

We can use moveInto(loc) or baseMoveInto(loc) to move a MultiLoc, but the effect

will be to move it out of all its existing locations leaving it only in loc. In some cases
this may be just what we want, of course; for example, at sunset we could call
sun.moveInto(nil) to remove the sun from everywhere at once. On other occasions

we might want to be more selective what we’re moving a MultiLoc in and out of, in
which case we can use:

● moveIntoAdd(loc) – make the MultiLoc present in loc without removing it from

any of its existing locations.

● moveOutOf(loc) – remove the MultiLoc from loc (without affecting the

MultiLoc’s presence anywhere else).

● saveLocation() - save the MultiLoc’s locationList for future restoration; for

example, we might call this at sunset before moving the sun into nil, so that we
can restore the sun to the sky at sunrise. This method returns the list that’s
been saved, and we’d need to store this return value in an object property to be
able to use it later.

● restoreLocation(oldLoc) – restore the MultiLoc’s locationList to the value

stored in oldLoc.

● reInitializeLocation() - rebuild the locationList according to the rules

defined in initialLocationClass, isInitiallyIn() and/or buildLocationList().

One kind of situation MultiLoc is not designed for is representing multiple similar
objects that occur in different locations, for example trees in a forest. For this kind of
situation we should instead use MultiInstance. To use this class we set up a list of

258

locations for the MultiInstance object in any of the same ways we would use for a

MultiLoc, but then define the actual object we want to appear in all those locations on
the instanceObject property of the MultiInstance object. For example, to populate

a forest with trees we could do this:

forestTrees: MultiInstance
 initialLocationClass = ForestRoom
 instanceObject: Decoration
 {
 'tall tree/trees' 'trees'
 "Tall trees surround you on every side. "
 isPlural = true
 }
;

The library will then put a copy of the instanceObject into each ForestRoom. Each of
these copies will be an anonymous object, but we can obtain a reference to the
instanceObject in any particular location loc with forestTrees.getInstanceIn(loc).

We can also move instances around with the moveInto(loc), moveIntoAdd(loc), and

moveOutOf(loc) in the same way as for MultiLoc, except that in this case we’re

actually adding and removing instances, not the MultiInstance object. For example, if
a group of loggers got to work in forestEast we could call

forestTrees.moveOutOf(forestEast).

A variation on multiple similar objects which exist in multiple locations is an object
(such a river) which extends through several locations. For this we should use the
MultiFaceted class, which works much the same as the MultiInstance class (from

which it inherits); e.g.

river: MultiFaceted
 locationList = [riverBank, meadow, forestSouth]
 instanceObject: Fixture
 {
 'broad sluggish river*rivers' 'river'
 "The broad river flows sluggishly by. "
 }
;

The principal (and in effect, sole) difference between a MultiInstance and a
MultiFaceted object is the way the latter handles pronouns. If a player types the
command x river while the player character is in riverBank, then moves the player
character to the meadow, then types x it the parser will recognize that 'it' is meant to
refer to the river, and will take it to mean the river object that’s in the meadow. The
same would not happen with the trees in the forest, since they are MultiInstance
trees, not MultiFaceted trees; the trees in the forest are numerically distinct (though
similar); the river is numerically the same river in all its locations.

At first sight it may appear as if the MultiFaceted river should qualify for being a
MultiLoc, but there is a difference. We could use MultiLoc for a river flowing between
two locations (say the north bank and the south bank of the same segment of river),

259

but we should not do so for a river extending through a number of locations. This
may become clearer if we spell out the practical differences. Suppose that all the
locations were in darkness: if we made the river a MultiLoc then a light shining on the
river from any of its locations would illuminate all of them (but this would not happen
with a MultiFaceted river). Similarly, suppose we made the river a RestrictedSurface
(which could have things like a swan and a boat on it). If we made the river a MultiLoc
then any swan or boat placed on it would be equally visible and accessible from every
location through which the river passed; if that’s not what we want then we need to
make the river a MultiFaceted (for which every segment of the river is a separate
object, even though all the segments are recognized as belonging to the same river).

15.2 Collectives

Dealing with related objects that occur in multiple places is one issue; the converse
issue is dealing with related objects that are all in the same place, that is, objects that
for some purposes we may prefer to treat together as a conglomerate while for others
we need to treat individually. The Collective class is used for items that we want to

deal with collectively when referred to in the plural, but individually when referred to
in the singular. Collective is a mix-in class that is generally mixed in with some Thing-
derived object; it’s normally a physical object that we take a command to refer to
when the objects it collects are referred to by the player in the plural. For example,
the Collective might be a bag of marbles, book of matches, or bunch of grapes; take
marbles would result in the bag of marbles being taken, while take marble would
result in the taking of one individual marble.

To set up a Collective we must make it share the plural vocabulary of the objects it
represents, and we needs its isCollectiveFor(obj) method to return true for all

those objects. For example to set up a bunch of grapes we might start with the
following:

class Grape: Dispensable, Food 'grape*grapes fruit' 'grape'
 isEquivalent = true
;
+ bunch: Collective, Dispenser 'bunch/grapes*grapes' 'bunch of grapes'
 "It's a big bunch of grapes. "
 myItemClass = Grape
 isCollectiveFor(obj) { return obj.ofKind(Grape); }
 cannotEatMsg = 'Don\'t be greedy! Eat the grapes one at time. '
 contentsListedInExamine = nil
;

++ Grape;
++ Grape;
++ Grape;
++ Grape;
++ Grape;
++ Grape;
++ Grape;

260

We’d probably want to tweak the desc property here, to vary the description a little
according to the number of grapes left. When there’s a lot of grapes on the bunch we
probably don’t want either a room description or an examine command to report the
number of grapes in the bunch, hence contentsListedInExamine = nil. Once

there’s only a handful of grapes left in the bunch, we might want that to change; so
perhaps a more sophisticated implementation would have contentsListedInExamine

= (contents.length < 5) or some such. The vocabWords with the repeated ‘grapes’

may look odd, but the first ‘grapes’ is necessary to make the bunch match ‘bunch of
grapes’ and the second is needed to make it act as a Collective for the individual
grapes. The bunch of grapes is also a good candidate for being a Dispensable (we
can’t return the grapes to the bunch after taking them), so we define it as such.

15.3 CollectiveGroups

A CollectiveGroup is a little like a Collective, in that it’s a single object representing

a group of objects, but it differs from a Collective in two important ways: (a) it doesn’t
represent a physical object in its own right; and (b) we can be selective about what
actions it handles (by default a CollectiveGroup handles only the examine command,
leaving all other commands to be handled by the individual objects). A
CollectiveGroup is thus an abstract object that can stand in to handle certain
commands directed at a group of objects with the same plural noun. This is perhaps
best clarified by means of an example:

bedroom: Room 'Bedroom'
 "This bedroom is quite cramped, but there's room for a bed, a chair, and
 a small desk. "
;

+ bed: Bed, Heavy 'narrow bed*furniture beds' 'bed'
 "It's narrow, but at least it's freshly made. "
 collectiveGroups = [furnitureGroup]
;

+ chair: Chair, Heavy 'hard wooden chair*furniture chairs' 'chair'
 "It's a hard wooden chair, solid but not particularly comfortable. "
 collectiveGroups = [furnitureGroup]
;

+ desk: Surface, Heavy 'small desk*furniture desks' 'desk'
 "It's just about large enough to write on. "
 collectiveGroups = [furnitureGroup]
;

+ furnitureGroup: CollectiveGroup, Heavy '*furniture' 'furniture'
 "There's a narrow bed, a hard wooden chair, and a small desk just
 large enough to write on. "
;

Without the CollectiveGroup, x furniture would list the bed, the chair, and desk and
give each of their individual descriptions, but with the CollectiveGroup defined as
above we get:

261

>x furniture
There's a narrow bed, a hard wooden chair, and a small desk just large enough to write on.

Note how this works: the furnitureGroup object shares the plural vocabulary

‘furniture’ (grammatically speaking one might call it ‘collective’, but it’s plural from the
point of view of TADS 3). To define which items belong to the furnitureGroup
CollectiveGroup, we define the collectiveGroups property as [furnitureGroup].

This is a list property so that the same item can belong to more than one
CollectiveGroup (there is also a collectiveGroup property, but its use is deprecated).

We add a NonPortable class to the CollectiveGroup’s class list just to make sure the
player doesn’t walk off with the CollectiveGroup (which shouldn’t be possible, but
might become so under certain circumstances). We also give the CollectiveGroup a
desc property that will be used instead of the desc properties of the individual

member items when they’re examined collectively.

We could also override the CollectiveGroup’s isCollectiveAction(action,

whichObj) method to allow the CollectiveGroup to respond to actions other than, or in

addition to, examine. Here action is the action in question, whichObj is either
DirectObject or IndirectObject (this would allow us to make the CollectiveGroup
handle, say throw ball at furniture but not throw furniture at ball), and the
method should return true if the CollectiveGroup is to handle the action. So, for
example, to allow the furnitureGroup to response to take, move, push and pull as
well as examine we could define:

+ furnitureGroup: CollectiveGroup, CustomFixture '*furniture' 'furniture'
 "There's a narrow bed, a hard wooden chair, and a small desk just
 large enough to write on. "
 isCollectiveAction(action, whichObj)
 {
 return action.baseActionClass
 is in (ExamineAction, TakeAction, PushAction, PullAction,
 MoveAction);
 }
 cannotTakeMsg = 'The furniture is all too heavy to start moving around. '
;

In this example, all the furniture is fixed in place in the bedroom, and the
CollectiveGroup is implemented as a further NonPortable object in the same location.
This is the simplest kind of CollectiveGroup to implement. It’s also possible to use a
CollectiveGroup with a bunch of portable objects; the CollectiveGroup is then given no
location at all, but is brought into scope whenever at least one of its member objects
is in scope. This case is much harder to deal with, since whatever we want such a
CollectiveGroup to handle, we have to know which of its members are in scope when
that action is attempted and tailor the action accordingly. For more details see the
notes on CollectiveGroup in the TADS 3 Library Reference Manual. For an example of a
portable CollectiveGroup see the section on CollectiveGroup (mobile) in the TADS 3
Tour Guide.

262

The TADS 3 library does provide one kind of portable CollectiveGroup that’s fairly easy
to use, the ItemizingCollectiveGroup. When this kind of CollectiveGroup is

examined, it lists such of its members as are currently visible, instead of describing
them. It also lists items carried by the player character separately. For example,
suppose we defined the following:

+ Thing 'blue marble*marbles' 'blue marble'
 collectiveGroups = [marbleGroup]
;

+ Thing 'red marble*marbles' 'red marble'
 collectiveGroups = [marbleGroup]
;

+ Thing 'green marble*marbles' 'green marble'
 collectiveGroups = [marbleGroup]
;

marbleGroup: ItemizingCollectiveGroup '*marbles' 'marbles'
;

We could then get the following transcript:

>x marbles
You see a blue marble, a red marble, and a green marble here.

>take red
Taken.

>x marbles
You see a blue marble and a green marble here. You are carrying a red marble.

263

16 Senses and Sensory Connections

16.1 The Five Senses

TADS 3 comes with handling for five senses: sight, sound, smell, touch and taste. The
most elaborate provision is made for sight; fairly elaborate provision is made for
sound and smell; and some basic provision is made for touch and taste. This largely
reflects the way these senses are used in real life.

TADS 3 in fact defines a Sense class; sight, sound, smell and touch are all objects of

this class. This scheme makes it possible to define additional senses if our game
needs them, though doing so is beyond the scope of this manual (if this is something
you need to do, look up Sense in the Library Reference Manual then study the
definition of Sense in the related source code, along with the definition of the existing
senses and the comments in the source code explaining how to set about creating
new senses).

Although there’s no taste sense object defined, handling taste and touch are fairly
similar. To customize the responses to taste something and feel something we just
override an object’s tasteDesc and feelDesc properties, for example:

apple: Food 'round green red sweet firm juicy apple*apples fruit' 'apple'
 "It's round, with patches of both red and green. "
 feelDesc = "It feels reassuringly firm. "
 tasteDesc = "It tastes sweet and juicy. "
;

We can handle sound and smell in a similar fashion; for example:

apple: Food 'round green red sweet firm juicy apple*apples fruit' 'apple'
 "It's round, with patches of both red and green. "
 feelDesc = "It feels reassuringly firm. "
 tasteDesc = "It tastes sweet at juicy. "
 soundDesc = "The apple is obstinately silent. "
 smellDesc = "There's the faintest sweet apple smell. "
;

Normally, however, we’d use Noise and Odor to model sounds and smells (we’ll meet
these shortly below). In cases like the apple example above, though, using soundDesc
and smellDesc is probably the way to go. Where these are simply given messages
saying that we either sense nothing or very little, using a Noise or Odor object would
be overkill.

Internally in the library touch is a little more complex than taste, since it is assumed
that anything that can be touched can be tasted; the calculations the library needs to
perform, then, are on whether a given object can be touched, or whether (for
example) it’s too far away or whether there’s something obstructing access to it.

The remainder of this chapter will be largely concerned with sight, smell and sound.

264

16.2 Vaporous and Intangible

Most of the Things we have seen implemented so far in TADS 3 are solid objects like
tables, chairs and rubber balls, but not everything we encounter in the world is of this
type: for example smells and sounds, or smoke and light.

In TADS 3 the base class for things of this kind is Intangible. Apart from one or two

specialized uses we shall encounter below, Intangible (as opposed to one of its
subclasses) is not of much use, since it has no sensory presence at all.

If you look at the definition of Intangible in the Library Reference Manual you’ll see
that it has four properties (originally defined on Thing), which it overrides to be nil:
sightPresence, soundPresence, smellPresence, and touchPresence. It also defines

a catch-all dobjFor(Default) and iobjFor(Default) to trap all actions whatsoever

and just display a notWithIntangibleMsg. This means that an object of class

Intangible will not respond to any action, and has no sensory presence. This is why it
is of limited use unless modified in some way, either in its subclasses (which between
them cover most of the useful cases) or on a particular Intangible object.

One possibility that the library doesn’t explicitly cater for is an object that can be
touched, but not seen, heard or smelled, so we might just about want to define
something like this:

+ Intangible 'force field*fields' 'force field'
 touchPresence = true
 sightPresence = true
 feelDesc = "It feels strangely solid for something you can neither see, hear
 nor smell. "

 dobjFor(Feel) { verify() {} }
;

But this kind of thing is likely to be very rare.

A much more commonly useful type of Intangible is provided by the Vaporous class.

This has a sightPresence of true and can be examined, listened to, looked behind,

looked in, looked through, looked under, searched, or smelled. Looking in, under,
through or behind a Vaporous will result in the display of the library’s lookInVaporous

message (unless we override the lookInDesc property). The Vaporous class is used

for objects that can be seen but not physically manipulated, such as smoke, fog, fire,
and beams of light. It might be smelly (like smoke) or noisy (like a crackling fire) but
it can’t be touched. If we want to change the message that’s displayed for all the
actions a Vaporous object won’t handle we can override its notWithIntangibleMsg.

So, for example, we might define a beam of light like this:

+ Vaporous 'beam/light/dust/motes' 'beam of light'
 "The beam of light streams in through the window and plays upon the floor. "
 lookInDesc = "Motes of dust hang in the beam. "
 notWithIntangibleMsg = 'The beam of light is too insubstantial for that. '
;

265

16.3 Sensory Emanations

As intimated above, TADS 3 has a special way of dealing with sounds and smells.
Although we can just assign a smellDesc and/or a soundDesc to various objects, the

library encourages us to treat sounds and smells as objects in their own right. These
are, of course, Intangible objects, and more specifically, objects of the
SensoryEmanation class, or rather, of various classes that descend from

SensoryEmanation (namely Noise, Odor, SimpleNoise and SimpleOdor).

These SensoryEmanation objects are generally located in the object to which they
relate. For example, if we were implementing a smelly piece of cheese we might
locate an Odor object in the cheese object; it were implementing a ticking clock we
might locate a Noise object in the clock object. Commands like smell cheese and
listen to clock would then be redirected to the Odor or Noise object located in the
cheese or the clock.

The first two kinds of SensoryEmanation (Noise and Odor) can be a little complex to
set up, since they have a whole host of properties describing the sound or smell under
different conditions. In the list below we’ll describe them in relation to sound, but
exactly the same principles apply to smell. All these properties should be defined as
double-quoted strings (or as methods that display some text):

● sourceDesc – the description of the sound appended to the source of this

sound when that source is examined. For example, we might define this as "It's
ticking. " so that "It's ticking. " would be appended to the description we got in
response to x clock.

● descWithSource – the description of the sound when the player character can

see its source. For example "A steady ticking comes from the clock. " in
response to listen to ticking.

● descWithoutSource – the description of the sound when the player character

can’t see the source (maybe the clock is in a drawer or under a pillow, but the
drawer or the pillow lets sound through). This might be something like "The
ticking sounds steady but muffled. " shown in response to listen to ticking.

● hereWithSource – the description of the sound as shown in a room description

or a response to an intransitive listen command when the player character can
see the source of the sound. For example, "The clock ticks steadily. "

● hereWithoutSource – the description of the sound as shown in a room

description or a response to an intransitive listen command when the source of
the sound is hidden. For example, "There is a steady ticking sound. "

The xxxxWithoutSource properties come about usually because the source of the
sound (or smell) is in a closed container made of some material that’s opaque to
sight, but transparent to sound or smell (see section 5.3.2 above).

The SensoryEmanation class has a number of other properties to help customize the

266

way sounds and smells are displayed:

● displaySchedule – a list of numbers defining a series of intervals between one

display of the hereWithXXXX message and the next. Once we reach the last
number in the list that interval is repeated indefinitely, unless the last entry is
nil, in which case the hereWithXXXX message is no longer displayed. This allows
us to reduce the frequency with which we call the player’s attention to an
ongoing sound or smell. For example, if we defined displaySchedule = [2, 4, 8]
on the clock, the “The clock ticks steadily” message would be repeated after
two turns, then after a further four turns, then on every eighth turn after that.

● isAmbient – if this true/nil flag is true then this is a background noise or smell

that won’t be mentioned except in response to an explicit listen or smell
command.

● isEmanating – this can be used as an on/off switch to define whether or not

this SensoryEmanation is currently active; for example if the battery was
removed from the clock so it stopped ticking, we could set isEmanating to nil on
the ticking sound to suppress reports of the ticking.

● noLongerHere – a message to display when the player character can no longer

hear/smell this SensoryEmanation, e.g. “You can no longer hear the ticking.”
The default is to display nothing.

● displayCount – the number of times in a row that a message has been

displayed about this sound/smell. This is reset to 0 each time the
SensoryEmanation comes into scope having been out of scope, so we could use
it to vary the message we display about a sound or smell according to how
many times it’s already been mentioned.

This may all look quite complicated, but the purpose of using a SensoryEmanation
rather than just defining a soundDesc or smellDesc on the object in question is that it
gives us a far richer set of behaviour. By using a Noise or an Odor instead we can:

● get a note of the sound or smell added to the description of its source object
when the source object is examined

● have the sound or smell reported in response to an intransitive listen or smell
command

● have the sound or smell reported as part of the room description, and then
mentioned again at author-defined intervals

● allows the player to listen to or smell the sound or smell, as well as its source;
e.g. listen to ticking as well as listen to clock

The following example shows how we might use a Sound to define the ticking of a
clock:

267

bedroom: Room 'Bedroom'
 "It's a small bedroom, with a small cabinet next to the bed. "
;

+ ComplexContainer, Heavy 'small cabinet*cabinets' 'small cabinet'
 subSurface: ComplexComponent, Surface { }
 subContainer: ComplexComponent, OpenableContainer { bulkCapacity = 7 }
;

++ clock: OpenableContainer, RestrictedContainer
 'black plastic alarm clock' 'black clock'
 "It's an alarm clock made of black plastic. "
 subLocation = &subContainer
 validContents = [battery]
;

+++ battery: Thing 'small aa battery*batteries' 'AA battery'
;

+++ Noise 'steady ticking sound/noise*sounds' 'ticking sound'
 sourceDesc = "It's ticking. "
 descWithSource = "A steady ticking comes from the clock. "
 descWithoutSource = "The ticking sounds steady but muffled. "
 hereWithSource = "The clock ticks steadily. "
 hereWithoutSource = "There is a steady sticking sound. "
 displaySchedule = [2, 2, 4, 4, 8]
 isEmanating = (battery.isIn(clock))
 noLongerHere = "You can no longer here the clicking of the clock. "
;

For some purposes, having to define all those different properties for a sound or smell
can approach overkill. In such circumstance we can use SimpleNoise or SimpleOdor

instead. For either of these classes we just need to define the desc property, and the

sourceDesc, descWithSource, descWithoutSource, hereWithSource, and
hereWithoutSource properties will all simply display whatever we defined in desc.

These classes are primarily intended for ambient sounds that are part of a location,
for example:

cave: Room 'Small Cave'
 "There's hardly enough room to swing a mouse in here, let alone a cat
 (though a mouse o'nine tails would surely be an odd thing to behold).
 Exits lead north, east, southwest and northeast. "
;

+ SimpleOdor 'damp pervasive smell/damp' 'damp smell'
 "There's a pervasive damp smell in the cave. "
;
That said, there’s no real reason why we shouldn’t use a SimpleXXXX
SensoryEmanation for objects that start in plain view, have ambient sounds, and don’t
really need an elaborate range of sound/smell descriptions. For example, if the clock
had started on top of the bedside cabinet instead of inside it, we might have defined:

+++ SimpleNoise 'steady ticking sound/noise*sounds' 'ticking sound'
 "A steady ticking sound comes from the clock. "
 isEmanating = (battery.isIn(clock))
;

268

The fact that the player would continue to see “A steady ticking sound comes from the
clock” if the player character shut the clock in the cabinet would hardly matter, since
by then the player would know perfectly well that it was the clock that was ticking.

16.4 Sensory Events

A SensoryEmanation is something ongoing, a smell or sound that persists through
time, that can be detected in response to the smell or listen commands, and that
may be reported as part of the ambience of the location. A SensoryEvent on the other

hand, is an event that occurs at a particular point of time: a sudden flash, a loud
bang, or the onset of a burning smell, for example (although in the last case this is
likely to be followed by a smell that persists for some time). A SensoryEvent is also

an event that other objects in scope (including, but not limited to, actors) can react
to.

The library defines three types of SensoryEvent: SightEvent, SoundEvent and

SmellEvent. When we want a SensoryEvent of one of these three kinds to occur, we

simply call its triggerEvent(source) method, where source is the object in the game

we consider to be responsible for the event. The main purpose of the
source parameter is to determine which other objects (including but not limited to
actors) can see, hear, or smell the event in question, but it can also be used by
reacting objects to decide how they want to react to the event.

The effect of calling triggerEvent() is simply to notify any observing objects in scope
that the event has just occurred (so that they can respond to it). According to the
Library Reference Manual we should use the mix-in classes SightObserver,

SoundObserver and SmellObserver to make an object responsive to SightEvents,

SoundEvents, and SmellEvents respectively, but as things stand in the library now,
this is not strictly necessary. All these three classes do is to define methods that do
nothing; we could just as easily define these methods directly on Actors or other
objects we want to react to SensoryEvents without bothering with the mix-in classes.
The other point of using these mix-in classes would be (a) in case they become
relevant in some future version of TADS 3 and we want to future-proof our code (to
the present author this seems unlikely, however) or (b) we particularly want to
identify xxxxObservers in our own code, e.g. because we want to write code that
loops over every SoundObserver in our game, or we need to test whether something if
a SmellObserver for some other purpose than responding to the SmellEvent that’s just
happened. Again, this seems unlikely to be the case. The upshot is that though in
order to be one hundred per cent safe in all eventualities we probably ought to use
the SightObserver, SoundObserver, and SmellObserver mix-in classes, in reality

we’ll be about 99.9% safe if we don’t.

What we do need to do, whether or not we use these mix-in classes, is to define the
relevant methods on any object we want to respond to SensoryEvents:

269

● To respond to a SightEvent, define notifySightEvent(event, source, info).

● To respond to a SoundEvent, define notifySoundEvent(event, source, info).

● To respond to a SmellEvent, define notifySmellEvent(event, source, info).

In all three of these methods, event is the SensoryEvent object on which
triggerEvent(source) is called, source is the source parameter with which
triggerEvent(source) was called, and info is a SenseInfo object describing the sensory

conditions under which the object we’re defining this method on can sense source. For
further details of what a SenseInfo object is consult the Library Reference Manual,

but in the great majority of cases we can probably just ignore the info parameter. The
kind of case where it might be useful is when a SensoryEvent could occur either right
next to the relevant observer or some distance away, and we want the observer to
behave differently in the two cases; we could then test whether info.trans was, say,

distant or transparent.

The definition of a SensoryEvent can normally afford to be fairly minimal; for
example:

bangEvent: SoundEvent;

We’d then describe the event at the same time as triggering, for example:

bomb: Thing 'bomb*bombs' 'bomb'
 explode()
 {
 "There's a loud bang from the bomb! ";
 bangEvent.notifyEvent(self);
 }
;

An alternative might be to override the notifyEvent() method to include a description
of the event:

bangEvent: SoundEvent
 notifyEvent(source)
 {
 "A loud bang comes from <<source.theName>>. ";
 inherited(source);
 }
;

This might be preferable if we were going to use bangEvent with a range of similar

objects, but otherwise the first method is probably the better one to use. Either way
we need to ensure that our message describing the event is only displayed if the
player character is in a position to sense the event. There are a number of ways we
can ensure this, including:

● Check the relative locations of the player character and the source of the
SensoryEvent;

270

● Trigger the SensoryEvent from a SenseFuse or SenseDaemon;

● Use the callWithSenseContext() function; e.g.

callWithSenseContext(bomb, sound, {: bomb.explode() });

To make an object respond to a SensoryEvent we call its notifyXXXEvent() method, for
example:

vase: Container 'delicate glass vase*vases' 'vase'
 notifySoundEvent(event, source, info)
 {
 if(event == bangEvent)
 "The vase shakes alarmingly. ";
 }
;

A neat way to make an NPC respond to Sensory Events is to have the Sensory Events
trigger an InitiateTopic, e.g.:

mavis: Person 'aunt mavis/woman*women' 'Aunt Mavis'
 isHer = true
 isProperName = true
 notifySoundEvent(event, source, info)
 {
 initiateTopic(event);
 }
;

+ InitiateTopic @bangEvent
 "<q>Goodness me!</q> cries Aunt Mavis. "<q>Whatever was that!</q> ";
;

If a particular SensoryEvent could have more than one source, we could make this
scheme a little more sophisticated:

mavis: Person 'aunt mavis/woman*women' 'Aunt Mavis'
 isHer = true
 isProperName = true
 eventSource = nil
 notifySoundEvent(event, source, info)
 {
 eventSource = source;
 initiateTopic(event);
 }
;

+ InitiateTopic @bangEvent
 "<q>Goodness me!</q> cries Aunt Mavis. "<q>Whatever was that!</q> ";
 isActive = (mavis.eventSource == bomb)
;

++ AltTopic
 "<q>Be careful what you're doing with that thing!</q> Aunt Mavis cries. "
 isActive = (mavis.eventSource == gun)
;

271

Or we could subclass InitiateTopic:

class EventTopic: InitiateTopic
 matchTopic(fromActor, obj)
 {
 local actor = getActor();
 if(eventSource != nil)
 {
 if(eventSource.ofKind(Collection))
 {
 if(eventSource.indexWhich({x: actor.eventSource.ofKind(x)}) == nil)
 return nil;
 }
 else if (!actor.eventSource.ofKind(eventSource))
 return nil;
 }
 return inherited(fromActor, obj);
 }
 eventSource = nil
;

Then we could write:

+ EventTopic @bangEvent
 "<q>Goodness me!</q> cries Aunt Mavis. "<q>Whatever was that!</q> ";
 eventSource = bomb
;

+ EventTopic @bangEvent
 "<q>Be careful what you're doing with that thing!</q> Aunt Mavis cries. "
 eventSource = gun
;

+ EventTopic @bangEvent
 "<q>Whatever is <<mavis.eventSource.theName>> doing?</q> Aunt Mavis
 complains.
 eventSource = Person
;

Another way in which we might typically use a SensoryEvent is to allow an actor to
respond to someone knocking at his or her door. Suppose that we have already
defined a KnockOn action, then we might define:

doorKnockEvent: soundEvent;

modify Door
 dobjFor(KnockOn)
 {
 verify() { logicalRank(120,'door'); }
 action()
 {
 defaultReport(knockNoEffectMsg);
 doorKnockEvent.notifyEvent(otherSide);
 }
 }
 knockNoEffectMsg = '{You/he} knock{s} on {the dobj/him}, but nobody replies. '
;

272

By generating a SoundEvent on the other side of the door, we enable a sound-
observing NPC on the other side of the door to respond to the knock if the appropriate
notifySoundEvent() method is defined on that NPC.

16.5 Sensory Connections

Sound, light and smells all travel. We have already seen how TADS 3 allows for the
travelling of these kinds of sensory data in and out of a closed container by defining
various kinds of material, so that, for example, a container that may be opaque to
sight may be transparent to sound. But sound, light and smells can travel further than
just in and out of containers; under the right circumstances they can travel between
rooms. The SenseConnector class allows us to define such sense paths between

different top-level locations. To do its job, a SenseConnector has to exist in all the

topic level rooms it connects; it is therefore a subclass of MultiLoc. Also, if a

SenseConnector is actually to do anything, we need to define which senses it can

pass and how well it can pass them. There are basically two ways in which we can do
this.

First, we can define the SenseConnector's connectorMaterial to be one of the

existing types of material (glass, paper, fineMesh or coarseMesh; there’s not much

point using adventium since then the SenseConnector won’t do anything). If none of
those materials do what we want, we can either define a new material that does, or
else use the second way.

This second way is to override the SenseConnector’s transSensingThru(sense)

method to return the level of transparency for each sense. The return value can be
one of opaque, transparent, attenuated, distant or obscured. So for example to

allow a sound-only connection between two adjacent rooms we might define:

SenseConnector, Intangible 'wall*walls' 'wall'
 locationList = [bedroom, bathroom]
 transSensingThru(sense)
 {
 return sense == sound ? distant : opaque;
 }
;

Note that since SenseConnector inherits directly from the mix-in class MultiLoc, it
needs to be mixed-in with some Thing-derived class. Where the SenseConnector is a
physical object in the game (such as a window we can see through from both sides),
we can mix it in with the object in question. Where it’s effectively an abstraction, as
here, we can use the Intangible class (this is the main situation in which Intangible is
actually useful). We give the SenseConnector the name ‘wall’ here, not so that the
player can refer to is, but so that the parser can (with messages like “You can’t reach
the gurgling water through the wall”); we simply need to choose a name that makes
sense to complete a sentence of the form “You can’t reach the x through the...”

273

There’s no requirement that a SenseConnector should connect adjacent locations. We
might, for example, want to connect quite remote connections via a video-link:

videoLink: SenseConnector, Intang 'video link*links' 'video link'
 locationList = [londonOffice, newYorkOffice]
 connectorMaterial = glass
;

To switch this video link on and off we could either switch its connectorMaterial
between glass and adventium, or move it in and out of the locations its meant to be
linking.

A SenseConnector can also link portable objects; for example two mobile phones
which the player character and an NPC carry around with them, allowing them to
speak to each other when they’re in remote locations. There is, however, a further
complication if we want this to be an audio-only link; since the NPC then won’t in
general be visible to the player character, the NPC won’t be in scope. To allow the
player to address conversational commands to the NPC over the audio-link we need to
put the NPC in scope, probably by overriding getExtraScopeItems(actor) on the

player character’s mobile phone to return a list including the NPC while a conversation
is in progress via the phone (this would be equally true of any other audio device, of
course). This is illustrated in the section on “Remote Sensory Scope” in the article on
“Redefining Scope” in the TADS 3 Technical Manual.

16.6 The DistanceConnector

There’s one type of SenseConnector that’s so commonly useful that it’s defined as a

class of its own: the DistanceConnector. This is a SenseConnector for which

transSensingThru(sense) returns distant for every sense. It is also already mixed-

in with Intangible. Since it inherits from MultiLoc and we don’t need to define any of

the common Thing properties on it, a DistanceConnector may very conveniently be

defined using the MultiLoc template, so a typical DistanceConnector definition

might look like this:

DistanceConnector [hallNorth, hallSouth];

A DistanceConnector is typically used to connect adjacent locations that are fully
visible to each other, such as the two halves of a large room (implemented as two
separate Room objects), or the four corners of a town square, or adjacent fields. They
can also be used when one location overlooks another, for example a flat roof
overlooking some of the area surrounding a building.

A DistanceConnector is really very simple to set up; normally we just have to list the
rooms we want it to connect in its locationList property, as we have already seen. The
complications start when it comes to how we want things described in the remote
loaction; we’ll look at that in section 16.8 below. In the meantime there’s four more

274

things to note about DistantConnectors.

First, a given room can be included in the locationLists of as many DistanceConnectors
as we like, but DistanceConnectors (or rather, the distant sensing type which they

implement by default) are not transitive. Suppose we were to define:

DistanceConnector [field, farmyard];
DistanceConnector [field, riverbank];

Then the field and the farmyard would be visible (and audible and smellable) from
each other, as would the field and the riverbank, but not the farmyard and the
riverbank (normally, this is just what we’d want, since we don’t want to end up with
everywhere being visible from everywhere else).

Second, subject to certain exceptions to be detailed below, the objects in a remote
location joined to the current location via a DistanceConnector can be seen, heard and
smelled, but they can’t be touched (or tasted), and so they can’t be interacted with in
any way that would require touch.

Third, by default, the player character can converse with an NPC who is in a remote
location joined to the player character’s location via a DistanceConnector. If the
distance being modelled is more than a short one, this may not be what we want. To
change this we can override canBeTalkedTo(talker, sense, info) on the NPC in

question (or on the Actor class in general). The most useful override might be:

modify Actor
 canBeTalkedTo(talker, sense, info)
 {
 return (info.trans == transparent);
 }
;

This would allow conversation with an NPC in the same room, or via a SenseConnector
that gave a transparent sound connection. For a DistanceConnector that modelled a
short distance over which conversation would be possible, we might then define:

DistanceConnector [loungeE, loungeW]
 transSensingThru(sense) { return sense == sound ? transparent : distant; }
;

And, of course, we could always subclass DistanceConnector (e.g. as
ShortDistanceConnector) to do this if we wanted several DistanceConnectors like this.

Fourth, by default the distance modelled by a DistanceConnector is regarded as too
far for an object thrown at something in a remote location to reach its target, so it will
be reported as falling short (and it will land in the location it was thrown from). If we
want to allow an object thrown from one location to hit a target in a remote location,
we need to override checkThrowThrough(obj, dest) on the DistanceConnector. This

might be a good candidate for our custom ShortDistanceConnector class:

275

class ShortDistanceConnector: DistanceConnector
 transSensingThru(sense) { return sense == sound ? transparent : distant; }
 checkThrowThrough(obj, dest) { return checkStatusSuccess; }
;

A more sophisticated override might first test the weight and/or bulk of the object
thrown (obj) to see if can travel that far, but that’s a complication too far for now!

At this point it might be helpful to say just a little about moving, touching and
throwing things through SenseConnectors and DistanceConnectors. These classes
define a trio of methods that control this:

• checkMoveThrough(obj, dest) – determines whether the object obj can be

moved to dest through this connector. By default a DistanceConnector allows
the move but a SenseConnector doesn’t.

• checkTouchThrough(obj, dest) – determines whether the object obj can

reach through this connector to touch the object dest on the other side. By
default a DistanceConnector and a SenseConnector both prevent this, but with
different failure messages.

• checkThrowThrough(obj, dest) – determines whether the object obj can be

thrown through this connector to reach the object dest on the other side. By
default a DistanceConnector and a SenseConnector both prevent this, but with
different failure messages.

SenseConnector defines these three methods thus:

 checkMoveThrough(obj, dest)
 {
 /* return an error - cannot move through <self> */
 return new CheckStatusFailure(&cannotMoveThroughMsg, obj, self);
 }

 checkTouchThrough(obj, dest)
 {
 /* return an error - cannot reach through <self> */
 return new CheckStatusFailure(&cannotReachThroughMsg, dest, self);
 }

 checkThrowThrough(obj, dest)
 {
 return new CheckStatusFailure(&cannotThrowThroughMsg, dest, self);
 }

The CheckStatusFailure objects returned by these methods may look a little

mysterious, but their effect is to prevent the move or touch with messages like “You
can’t move/reach the whatever through (the connector)” (which can look rather odd if
we haven’t given the SenseConnector a name). These are generated via calls like:

 failCheck(&cannotMoveThroughMsg, obj, self);

276

We can thus change the failure message we get by overriding one or other of these
methods, for example:

 checkTouchThrough(obj, dest)
 {
 return new CheckStatusFailure('{You/he} {can\'t} reach that from here.

');
 }

On DistanceConnector these methods are redefined as:

 checkTouchThrough(obj, dest)
 {
 /* we can't touch through this connector due to the distance */
 return new CheckStatusFailure(&tooDistantMsg, dest);
 }

 checkMoveThrough(obj, dest) { return checkStatusSuccess; }

 checkThrowThrough(obj, dest)
 {
 return new CheckStatusFailure(&tooDistantMsg, dest);
 }

The first of these prints a message of the form “The dest is too far away.” The second
allows the movement to go ahead. Note that if we override checkTouchThrough() on a
DistanceConnector we’ll still “The dest is too far away” message unless we make the
DistanceConnector return something other than distant in its
transSensingThrough(sense) method for sense == touch.

16.7 The Occluder

Once we establish line of sight between two locations, most things in one location
should be visible in the other – most things, but not necessarily all. If I’m looking
through a window into a room, I may well not be able to see the things inside the
room that are up against the wall the window looks through. If a flat roof overlooks
the surrounding area, it may be possible to see everything in the surrounding area
from the roof, but that doesn’t mean that everything on the roof is visible from the
surrounding area below.

For this kind of situation we can use an Occluder, which can selectively remove from

view (or hearing or smell) objects that a SenseConnector has made visible, audible or
smellable (or indeed, objects in the same location as the observer, although if we get
that effect as well it may well be due to an error in our code). Occluder is a mix-in

class that can be mixed in with any object in the location whose contents we want to
occlude, but it’s generally convenient to mix the Occluder in with the SenseConnector

that establishes the sensory connection in the first place; that way we define both the

277

connection and the exceptions to it in the same place.

There are two ways we can make an Occluder exclude items from view (or hearing,

or smell):

1. We can override the Occluder’s occludeObj(obj, sense, pov) method to

return true for every object obj we want to be occluded for sense from the point
of view of the pov object (normally an actor doing the sensing; typically the
player character). We’d normally use the pov object to test whether or not it
was in the same location as the object we were thinking of occluding.

2. We can override the isOccludedBy(occluder, sense, pov) method on the

objects we want to be occluded by occluder for sense from the point of view of
pov.

We can also mix these two methods, but in order to do so we must ensure that our
overridden occludeObj() method on the Occluder ends by returning inherited(obj.

sense, pov).

For example, if we want to use a window as a SenseConnector so that we can see into
the front room of a cottage from the outside, we might define it thus:

Occluder, SenseConnector, Openable, Fixture '(cottage) window*windows' 'window'
 connectorMaterial = (isOpen ? fineMesh : glass)
 locationList = [frontRoom, frontDrive]
 occludeObj(obj, sense, pov)
 {
 if(obj.isOrIsIn(bookcase) && pov.isIn(frontDrive))
 return true;

 return inherited(obj, sense, pov);
 }
;

Here we are supposing that the bookcase is up the wall that the window looks
through, so that someone peering through the window from the outside (in the
frontDrive location) will be unable to see either the bookcase or its contents. We’re
also supposing that when the window is closed we can only see through it, but that
when it’s open we can also hear and smell through it.

It’s very easy to write buggy occludeObj() methods, and the bugs can have quite

weird effects (especially if we accidentally occlude the player character or the player
character’s location). It’s hard to give useful general advice on how to avoid bugs
here, other than to urge more than usual care and to suggest using isOccludedBy()

in preference to occludeObj() wherever possible (in the above example using

occludeObj() for the bookcase was nevertheless the right thing to do, since it

provides the simplest way of occluding everything in or on the bookcase along with
the bookcase itself).

278

16.8 Describing Things in Remote Locations

16.8.1 Obscured, Remote and Distant Descriptions

As we have seen, setting up a DistanceConnector (or some other kind of
SenseConnector) is relatively straightforward, but once we have done so, things in
one location become visible from one or more other locations, and the chances are
that not only will we want object listings in room descriptions and the like to
distinguish objects that are close to hand from those that are in remote locations (i.e.
not in the same room as the player character), but we will also want them described
differently (depending in part, of course, on how far off we imagine them to be).

TADS 3 provides several mechanisms for controlling how things are listed and
described in remote locations (and under other non-standing viewing conditions), so
we had better work through them one at a time. Perhaps the best place to start is
with the various xxxxSize properties defined on Thing, namely sightSize, soundSize

smellSize and touchSize. Each of these can have one of three values: small,

medium or large; by default most Things are medium in all four senses, though

certain classes that are very likely to be used for large objects (Enterable, for
example) have a large sightSize by default. Note that none of these properties
correlates to the bulk of an object; giving an object a bulk of 1,000 won’t make its

sightSize large, since these two properties are defined quite independently of each

other. The effect of these three values on these three properties is how well objects
can be sensed under distant or obscured conditions:

● small – the object can’t be sensed at all under distant or obscure sensing

conditions (for example, it’s too small to be seen from a distance).

● medium – it’s possible to sense that the object is there, and what it is, but not to

make out any detail, so the object will be listed but an attempt to examine it
will be met with a message like “The whatever is too far away to make out any
detail”. The actual messages that are used are defined in defaultDistantDesc

and defaultObscuredDesc(obs), where obs is the object (container or

SenseConnector) that’s doing the obscuring.

● large – it’s possible both to sense that the object is there and to make out the

detail under obscure or distant sensing conditions (e.g, we can make out some
details of a house or mountain even though we’re some way away from it).

Things can get a bit more complicated than the above schema suggests – if we decide
to complicate them (or at least, change them). When a large object is examined under
distant or obscured conditions, the description displayed is that defined in its desc

property (or its initDesc property, if applicable). We can, however, change this by

defining other properties that take precedence if they’re defined on an object (by
default they aren’t); if they are defined, the difference between a medium and large
sightSize becomes irrelevant (although an object with a small sightSize will remain

279

invisible under distant or obscured conditions).

These other properties/methods, in order of the priority they take are:

1. remoteDesc(pov) – this is the description that’s displayed when this object is

viewed from a remote location (i.e. a location other than the one it’s in); pov is
the actor (or other object, e.g. a surveillance camera) doing the looking.

2. obscuredDesc(obs) – this is the description that’s displayed when the object is

viewed under obscured conditions, with obs being the object (either a container
or a SenseConnector) that’s doing the obscuring.

3. distantDesc – this is the description that’s displayed when this object is

examined under distant viewing conditions.

This means that if an object is examined from a remote location, its remoteDesc() will

be used to provide the description, if a remoteDesc() has been defined for it. Failing

that, its obscuredDesc() method will be used if it has been defined and the relevant

SenseConnector results in obscured viewing conditions. Failing that, its distantDesc

will be used if it has been defined and the relevant SenseConnector results in distant
viewing conditions. Failing that its desc or initDesc property will be used if the

relevant SenseConnector results in transparent or attenuated viewing conditions and
the sightSize is large. Failing that either the defaultDistantDesc or the

defaultObscuredDesc() will be used. This may look complicated, but it does at least

give us a large amount of control (we don’t have to use most of this if we don’t want
to, but it’s available to us if we do).

There’s one further point to underline before we move on, since it’s a clear source of
potential confusion, and that’s the distinction between distant and remote viewing
conditions. Viewing is remote if the actor doing the viewing is in a different top-level
room from the object being viewed, that is (in the case that the player character is
doing the examining and obj is the object being examined) when
gPlayerChar.getOutermostRoom != obj.getOutermostRoom. Viewing is distant if the

SenseConnector returns the value distant for sight in its transSensingThrough()

method. This need not be the case; we could set up a SenseConnector between two
different top-level rooms that instead returned transparent, attenuated or

obscured; viewing conditions would then not be distant, though they would still be

remote.

This distinction is less relevant with sounds and smells, since there is no
remoteSoundDesc or remoteSmellDesc. There are, however, distantSoundDesc,

distantSmellDesc, obscuredSoundDesc(obs) and obscuredSmellDesc(obs)

properties and methods, which work in much the same way as their visual
equivalents. If an object is listened to or smelled under transparent conditions, or its
soundSize or smellSize (as appropriate) is large, then its associated Noise or Smell

object is used if it has one, or otherwise its soundDesc or smellDesc is used.

280

Otherwise obscuredSoundDesc(obs) or obscuredSmellDesc(obs) (on the source

object, not the SensoryEmanation) is used for objects obscured to sound or smell by
obs, or distantSoundDesc or distantSmellDesc is used for objects listed to or

smelled at a distance.

16.8.2 Distant, Obscured and Remote Object Listings

We can give an object a paragraph of its own in the listing of objects in room
descriptions by giving it a specialDesc and/or initSpecialDesc, as we have already

seen. The second of these, initSpecialDesc is used for as long as isInInitState is

true which, by default, is until the object is moved (although we’re free to change this
if we want to use some other condition, such as until the item is described). Provided
a specialDesc is defined we can also define obscuredSpecialDesc and/or

distantSpecialDesc and/or remoteSpecialDesc(actor), where actor is the actor

doing the viewing (usually the player character). Provided an initSpecialDesc is

defined we can also correspondingly define obscuredInitSpecialDesc and/or

distantInitSpecialDesc and/or remoteInitSpecialDesc(actor). In both sets the

remote version will take precedence when the actor and the object being listed are in
different top-level rooms.

By default the distantSpecialDesc and obscuredSpecialDesc properties copy the

specialDesc property, and the remoteSpecialDesc() method displays the

distantSpecialDesc property (so that if we override distantSpecialDesc the

change will also be reflected under remote viewing conditions). Likewise the
distantInitSpecialDesc and obscuredInitSpecialDesc by default take their values

from initSpecialDesc, and remoteInitSpecialDesc() displays the

distantSpecialDesc. We can, of course, override any of this as desired. With a bit

more determination and ingenuity we can also override the circumstances under
which these properties are used, but that’s beyond the scope of this manual; to find
up more look up Thing in the Library Reference Manual and look at the definitions of
methods like useSpecialDesc(), useSpecialDescInRoom(room),

useSpecialDescInContents(cont), and useInitSpecialDesc().

Where neighbouring locations are connected by DistanceConnectors (or some other
kind of SenseConnector), we need to use distantSpecialDesc or

remoteSpecialDesc() alongside specialDesc to make it clear when we’re listing

something that’s not in the player character’s immediate location, for example:

+ table: Surface, Heavy 'large wooden table*tables' 'large wooden table'
 specialDesc = "A large wooden table occupies much of the floor-space at
 this end of the room. "
 remoteSpecialDesc(actor)
 {
 switch(actor.getOutermostRoom)
 {
 case hallSouth:
 "A large wooden table stands at the far end of the hall. ";

281

 break;
 case carPark:
 "Through the window you can see a large wooden table in the hall. ";
 break;
 }
 }
;

Note that in the case of Actors, specialDesc, distantSpecialDesc and

remoteSpecialDesc(actor) are farmed out to the current ActorState.

In addition to items that have a specialDesc or initSpecialDesc defined, which get

their own paragraphs in room descriptions, are the miscellaneous portable items
which are listed with a single sentence like “You see a glove, a rubber ball, a pair of
green Wellington boots, and an old walking stick here”. Once again, if some of these
items are in a remote location, this needs to be made clear to the player. The library
does try to take care of this, but the default results can be rather crude. For example,
suppose we define a long hall as two rooms joined by a DistanceConnector, and we
give the two ends of the hall the room name ‘Hall (east end)’ and ‘Hall (west end)’.
From the west end of the hall we might see a listing like:

In the hall (east end), you see a rubber duck.

This could be more elegantly phrased, and with other room names the effect can be
even more jarring, e.g.:

In the in front of a cottage, you see a brass key.

There are basically two ways we can fix this, either on the remote room we’re looking
at, or at the room we’re looking from. The first of these is generally the simpler, and
we’ll look at it first.

The way a remote room describes itself under remote viewing circumstances is
defined in its inRoomName(pov) property, which by default returns actorInName (a

single-quoted string value). Once again, pov is the actor (normally the player
character) who’s doing the looking. In turn the default definition of actorInName is

(actorInPrep + ' ' + theNameObj), which is what generates a phrase like 'in the

hall (east end)' or 'in the in front of a cottage'. The phrase generated can thus be
changed by one of three methods

1. Override the name and/or actorInPrep properties of the room.

2. Override the actorInName property of the room.

3. Override the inRoomName(pov) method of the room.

Method 1 might be the method to use if we have other reasons for overriding name

and/or actorInPrep. Method 2 is generally the most straightforward method to use,

unless we want to vary the locational phrase according to where the remote room is

282

viewed from, in which case we need to use method 3.

For example, in the case of the two-room hall mentioned above, we’d probably use
actorInName:

hallEast: Room 'Hall (East End)' 'the east end of the hall'
 "This large hall continues to the west. A flight of stairs leads up to the
 north. "

 actorInName = 'at the far end of the hall'
 north = hallStairs
 up asExit(north)
 west = hallWest
;

On the other hand, if we had a long road with north, mid, and south sections, then we
might well use inRoomName() on the middle section:

roadMid: OutdoorRoom 'Long Road (middle)' 'the middle section of the road'
 "The long road continues to north and south. "
 north = roadNorth
 south = roadSouth

 inRoomName(pov)
 {
 return 'further down the road to the <<if pov.isIn(roadNorth)>>south
 <<else>>north<<end>>';
 }
;

Whichever way we choose to change the way the remote location is described, the list
of miscellaneous portable items in the remote location will always take the form,
“Location phrase (e.g. at the the far end of the hall) you see list of items.” If we want
to change it further (that is, if we want the list introduced with something other than
“you see”), we need to override remoteRoomContentsLister(other) on the room

we’re looking from. The simplest way to use this is to make it return a new
CustomRoomLister to which we can pass the way we want a list of objects in the

remote room to be introduced and concluded as the two arguments to its constructor;
for example:

hallWest: Room 'Hall (West End)' 'the west end of the hall'
 "This large hall continues to the east. A flight of stairs leads down to the
 south. "
 east = hallEast
 south = hallStairsDown
 down asExit(south)
 remoteRoomContentsLister(other)
 {
 return new CustomRoomLister('Right at the far end of the hall {you/he}
 catch{es} sight of', '. ');
 }
;

283

Note that if we do this, whatever we define here will take precedence over whatever
we did with actorInName or inRoomName(pov) on the remote room, the reason being

that the remoteRoomContentsLister() method is always used when listing

miscellaneous portable items in a remote location, while its default behaviour is to
return a lister that uses the inRoomName(pov) of the remote location whose items are

being viewed. By overriding remoteRoomContentLister(other) (where other is the

remote room whose contents are to be listed), we in effect by-pass the use of
inRoomName().

Even with this device, we have to introduce the list of items in the remote location
with something more or less equivalent to “you see”. If we want to introduce it with
something equivalent to “there is” or “there are”, a CustomRoomLister won’t quite do

the job for us, since it doesn’t provide the means to switch between “is” and “are”
according to the number of things that are to be listed. But if we really want to do this
we can define our own custom Lister class and pass anonymous functions to its
constructor, like this:

class MyCustomRoomLister: Lister
 construct(prefix, suffix)
 {
 prefixFunc = prefix;
 suffixFunc = suffix;
 }

 showListPrefixWide(itemCount, pov, parent)
 { local p = prefixFunc; p(itemCount); }
 showListSuffixWide(itemCount, pov, parent)
 { local s = suffixFunc; s(itemCount); }
 showListPrefixTall(itemCount, pov, parent)
 { local p = prefixFunc; p(itemCount); }

 /* our prefix and suffix functions */
 prefixFunc = nil
 suffixFunc = nil
;

hallWest: Room 'Hall (West End)' 'the west end of the hall'
 "This large hall continues to the east. A flight of stairs leads down to the
 south. "
 east = hallEast
 remoteRoomContentsLister(other)
 {
 return new MyCustomRoomLister({itemCount: "At the far end of the
 hall <<itemCount > 1 ? 'are' : 'is'>> " }, {itemCount : ". "});
 }
;

Using a constructor to pass anonymous function pointers to a dynamically created
object may seem quite an obscure trick, but it’s potentially quite a powerful one! (As
of TADS 3.1.0 one could also perform this trick by passing floating or anonymous
method pointers to the constructor and using setMethod() within the constructor; for
an example see section Error: Reference source not found below).

284

Exercise 21: Try implementing a game along the following lines. A town has to be
evacuated due to imminent flooding from a nearby river. In one corner of the town
square an old woman is sleeping on a bench. The player character, a policeman, has
to wake her and persuade her to leave, but she proves resistant to being woken up.
The square is large enough to need implementing as four rooms (one for each
corner), although they are all visible from one another. An ornamental fountain, into
which someone has thrown a coin, stands in the centre of the square, and the water
gushing from the fountain makes a sound that should be audible throughout the
square. In another corner of the square stands a barrel organ that can be played or
pushed around; the player can try playing the organ next to the old woman but this
merely makes her wake up for a moment, complain about the noise, and then go back
to sleep, as does shouting or blowing a whistle.

Along the north side of the square runs a building that can be entered from the
northeast corner of the square. Inside the building are two rooms, a hall and a
chamber; the hall is entered from the square, and the chamber has a window (too
small to crawl through) overlooking the northwest corner of the square. The chamber
contains a radio that can be heard in the hall (when it’s switched on) and in the
square (when the window is open). It also contains a whistle. The radio starts out
inside a packing case which is opaque to sight but transparent to sound.

From the northwest corner of the square you can go west into a park, which consists
of two locations visible from each other. A river (the one that’s about to flood) runs
alongside the west side of the park. In the south end of the park (nearest the square)
a bonfire is smouldering by the river, letting off acrid-smelling smoke. In the north end
of the park (furthest from the square) are a basket of rotting fish (stinking
appropriately) and a tall tree with a trumpet caught out of reach in its branches. The
branch holding the trumpet can be reached via the ladder that needs to be fetched
from the hall. Playing the trumpet in the immediate vicinity of the old woman wakes
her up fully and wins the game.

285

17 Attachables

17.1 The Attachable Framework

In TADS 3 an Attachable is something that can be temporarily attached to something
else and later detached from it again. Attachables are potentially one of the trickiest
kinds of thing to deal with in TADS 3, not least because after one thing is attached to
another, there are so many ways in which the resulting attachment might behave. For
example, suppose the player character attaches a rope to a particular object in the
current location, and then tries to go to another location while still holding the rope. A
number of different outcomes could result, including:

● The object tied to the rope is dragged along behind the player character, so that
it ends up in the new location along with the rope.

● The rope is long enough to allow the player character to walk into the new
location without dragging the object at the other end of the rope, so that the
player character ends up in the new location, with one end of the rope in the
player character’s hand and the other attached to the rope in the old location.

● The rope is quite short but the object is too heavy to be dragged, so the player
character is jerked to a halt as s/he tries to leave the location.

● The rope is quite short but the object is too heavy to be dragged, so that the
rope is snatched from the player character’s grasp as s/he leaves the location.

● The rope is quite short but the object is too heavy to be dragged, so that the
rope breaks as the player character leaves grasping one end of it and enters the
new location.

Doubtless one could think of other possibilities, just as one could think of other types
of situation in which one object is attached to another. The upshot is that the TADS 3
library can scarcely define a straightforward Attachable class that works absolutely
fine straight out of the box; it can only provide a framework which we then have to
adapt to the particular circumstance we’re trying to model.

There is, however, one adaptation that we can carry out straight away whatever kind
of attachment situation we have in mind. Alongside the AttachTo, Detach and
DetachFrom actions, for which the library defines framework handling on the
Attachable class, the library defines Fasten, FastenTo, Unfasten, and UnfastenFrom
actions which the Attachable class ignores. Whatever distinction the library makes
between Attach and Fasten, or between Detach and Unfasten, most players will
probably regard them as two pairs of synonyms, at least in the case of most of the
Attachable objects we’re likely to be defining, so we can save ourselves quite a bit of
trouble later on if we make them synonyms from the outset by defining:

286

modify Attachable
 dobjFor(Unfasten) asDobjFor(Detach)
 dobjFor(Fasten)
 {
 verify() { }
 action() { askForIobj(AttachTo);)
 }

 dobjFor(FastenTo) remapTo(AttachTo, self, IndirectObject)
 dobjFor(UnfastenFrom) remapTo(DetachFrom, self, IndirectObject)

;

Note that we don’t also need to handle iobjFor() for these last two commands, since

the library assumes that one Attachable can only be attached to another Attachable,
so that where a player issues a command of the form fasten x to y or unfasten x
from y then provided x and y are both Attachables we can leave the remapping to the
direct object.

This leads into one of the main underlying principles of the Attachable framework; it’s
designed so that attach x to y always means the same as attach y to x and we
should be able to define the responses to attachment and detachment on an
Attachable without worrying about whether it will be used as the direct object or the
indirect object.

Note that Attachable is a mix-in class that needs to be used in conjunction with

Thing-derived classes. The principal Attachable properties and methods we need to
know about are:

● attachedObjects – a list of objects currently attached to this Attachable; we

don’t normally need to manipulate this property (since there are methods which
do that for us), unless we want certain objects to start out attached at the
beginning of the game, but we might want to examine it.

● beforeTraveler(traveler, connector) – note that this method is overridden

on Attachable to carry out various notifications, so that if we override this
method ourselves we’ll probably need to call the inherited method somewhere
in our code.

● canAttachTo(obj) – this should return true if this Attachable can be attached

to obj (which should also be an Attachable); note that this need only be defined
on one of the objects in the potential attachment arrangement. In some
complex cases it may be necessary to end by calling the inherited method, but
we then need to be careful not to create a deadly embrace in which the direct
and indirect objects of at attach command keep calling this method on each
other.

● canDetachFrom(obj) – this should return true if this Attachable can be

detached from obj. The comments on canAttachTo() apply here also.

287

● cannotDetachMsgFor(obj) – the message used to explain why this Attachable

cannot be detached from obj (which may be nil if the player typed detach
something without specifying an indirect object). This should return a single-
quoted string or a message property pointer.

● explainCannotAttachTo(obj) – this should display a message (perhaps using

reportFailure()) explaining why this Attachable cannot be attached to obj.

● handleAttach(other) – by default this does nothing; we should override it to

carry out any further side effects of or display any further messages relating to
attaching this object to other. Note that this is called on both the direct and
indirect objects of an attach command, so we don’t need to worry about which
will turn out to be which (and we should only write our custom handling on one
of them). Neither this method nor the next need concern itself with
manipulated the attachedObjects list since this is dealt with elsewhere.

● handleDetach(other) – this is similar to handleAttach(other), except that it is

called on both the direct and indirect objects of a detach command.

● isListedAsAttachedTo(obj) – returns true if this item is to be listed as being

attached to obj when this item is examined; by default this returns true unless
this item is permanently attached to obj or unless it’s the major attachment
(see below) in this attachment relationship.

● isListedAsMajorFor(obj) – returns true if obj is listed as attached to this

item when obj is examined; by default this returns true if this item is the major
item in the attachment relationship and obj should be listed as attached to this
item.

● isMajorItemFor(obj) – by default attachments are described symmetrically:

“attached to the handle is a blade” or “attached to the blade is a handle”, but in
some cases this would look strange: we’d say “attached to the battleship is a
limpet-mine” but hardly “attached to the limpet-mine is a battleship”. By default
this method returns nil, but where this item is clearly the major item in an
attachment relationship (e.g. the battleship when obj would be the limpet-
mine) it should return true. This only effects the way the attachment
relationship is described.

● moveWhileAttached(movedObj, newCont) – when an attached object is moved

to a new container, this method is called on the object and on every object
attached to it. movedObj is the object that’s actually being moved and newCont
is the container it’s being moved into. This can be used, for example, to make
all attachments move together (when one is moved into a new container, the
rest follow) or else to make the moved object become detached from the object
it’s attached to. Note, however, that calling moveInto() from this method on

something we’re attached to will cause this method to be triggered again, so we
must be very careful not to write code here that would get trapped in an infinite

288

loop; one solution might be to call baseMoveInto() on attached objects from

this method, thereby avoiding recursive notification calls.

● travelWhileAttached(movedObj, traveler, connector) – this is called

when this item or anything attached to it is being moved to a new location
because it’s being carried by traveler through connector. movedObj is the
attached object that’s actually being carried. By default this does nothing.

For further details on these (and other) method of the Attachable class, look up
Attachable in the Library Reference Manual.

This all looks complicated enough, but it won’t work particularly well out of the box.
You can verify this by, for example, defining a pair of lego bricks (one red, one yellow)
as Attachables and then try playing with them. You’ll find, for example, that you can
attach the red brick to the yellow brick, and then carry the red brick into another
room, leaving the yellow brick behind while the red brick and yellow brick are still
attached to each other! This is because, in the general case, the library simply can’t
know what rules we want to enforce in such a case: should the red brick have become
detached from the yellow brick, or should the yellow brick have come with it?

In this case we’d probably want the bricks to move together when attached, so we
could try defining a Brick class that enforces that:

class Brick: Attachable, Thing
 canAttachTo(obj) { return obj.ofKind(Brick); }
 moveWhileAttached(movedObj, newCont)
 {
 if(movedObj != self)
 baseMoveInto(newCont);
 }
;

If we then define both the yellow brick and the red brick to be of the Brick class,
things will work more sensibly (provided we only have two bricks; once we have more
than two the above code may not cope). But it might be equally sensible to enforce
the condition that a moved brick becomes detached when moved:

class Brick: Attachable, Thing
 canAttachTo(obj) { return obj.ofKind(Brick); }
 moveWhileAttached(movedObj, newCont)
 {
 if(movedObj == self)
 foreach(local other in attachedObjects)
 tryImplicitAction(DetachFrom, self, other);
 }
;

Although, if that’s what we want, we’d probably be better off using a
NearbyAttachable (see below).

If we have three bricks (adding a green one, say), then our first piece of code won’t
work if we attach the red brick to the yellow brick, then the yellow brick to the green

289

brick, then take the red brick. The green brick will be left behind. If we try to fix it by
changing baseMoveInto() to moveInto() to trigger the notifications on the green

brick, we’ll cause a stack overflow. One possible solution would be to define a custom
property (let’s call is notificationCount) on the Brick class which is increased by

one every time we enter the moveWhileAttached() routine and decremented by one

every time we leave it. We can then use moveInto() within moveWhileAttached() to

trigger a train of notifications, but check the value of the notificationCount

property to ensure that the object moveWhileAttached() is being called on hasn’t

already handled the notification:

class Brick: Attachable, Thing
 canAttachTo(obj) { return obj.ofKind(Brick); }
 moveWhileAttached(movedObj, newCont)
 {
 notificationCount++;
 if(movedObj != self && notificationCount == 1)
 moveInto(newCont);

 notificationCount--;

 }
 notificationCount = 0
;

We could go on adding examples, but it would be impracticable to try to cover every
possible case, and too long-winded to try to cover even every supposedly common
case. The three examples given above indicate what kinds of thing we may need to
think about in dealing with Attachables; we should next move on to some of the
special kinds of Attachable that the library already defines for us.

17.2 NearbyAttachable

A common requirement with Attachables is that if we attach one object to another, the
two objects should be in the same place (that is, within the same container). The
NearbyAttachable class enforces this condition. More specifically it enforces:

● When one NearbyAttachable is being attached to another, both must be in the

same container; if necessary one or the other object is moved to that container
by an implicit action (by default the indirect object’s container is the one used).

● When one NearbyAttachable that is attached to another is removed from their

common container, the two become detached.

Simply using the NearbyAttachable class rather than Attachable can thus solve a lot

of problems for us. Provided this is actually the sort of attachment relation we want,
we can use NearbyAttachable straight out of the box. For example, we could just

define our Brick class as:

class Brick: NearbyAttachable, Thing
 canAttachTo(obj) { return obj.ofKind(Brick); }

290

;

If NearbyAttachable only does more or less what we want, but not quite, there are

ways in which can customize how it behaves. In particular, we can override the
getNearbyAttachmentLocs(other) method, which defines where the attached

objects should end up when the object the method is defined on is attached to other.
This method returns a list with three values: [loc1, loc2, priority].

● loc1 is the location where we want this object to end up after the attachment.

● loc2 is the location where we want the other object to end up.

● priority is an integer value; if one NearbyAttachable is being attached to

another then getNearbyAttachmentLocs() is called on both; the one which

returns the higher priority is the one that determines what the target

destinations of the two objects will be. If the two priorities are equal, the
indirect object wins. If one object is a NearbyAttachable and the other isn’t

(we can attach a NearbyAttachable to another kind of Attachable) then the

NearbyAttachable wins (since the other object won’t be offering any

suggestions in any case).

By default, getNearbyAttachmentsLocs(other) returns [location, location, 0]

unless other is non-portable, in which case it returns [other.location,

other.location, 0] (since other then can’t be moved). If we want to override this

method, we probably want the third value in the returned list to be something greater
than 0 to ensure that our override wins out over the default.

For example, suppose we want to tweak our Brick class so that if the player character
is holding one brick and attaches it another (or attaches the other brick to the brick
he’s holding), both bricks end up being held by the player character. We could do it
like this:

class Brick: NearbyAttachable, Thing
 canAttachTo(obj) { return obj.ofKind(Brick); }
 getNearbyAttachmentLocs(other)
 {
 local priority = isIn(gPlayerChar) ? 10 : 0;
 return [location, location, priority];
 }
;

Alternatively, we might want to so arrange it so that both bricks end up being held by
the player character wherever they start out:

class Brick: NearbyAttachable, Thing
 canAttachTo(obj) { return obj.ofKind(Brick); }
 getNearbyAttachmentLocs(other)
 {
 return [gActor, gActor, 10];
 }
;

291

Clearly, this only scratches the surface of what we could do with this method. In
principle we could make attached objects end up anywhere we liked (provided it’s
accessible), including two different locations (despite the fact that the class is called
NearbyAttachable). The main limitation is that taking (or otherwise moving) a

NearbyAttachable while it’s attached to something else results in its becoming

detached, which may not always be what we want. However, if its behaviour for
attaching things is what we want (and as we’ve just seen, it can be pretty flexible),
then it may we be worth using a NearbyAttachable and overriding its
movedWhileAttached() method (perhaps along the lines of the last example in the

previous section).

17.3 Other Kinds of Attachable

17.3.1 PlugAttachable

PlugAttachable isn’t exactly a kind of Attachable, it’s a mix-in class we can use with

other kinds of Attachable to make the command plug into and unplug or unplug
from behave like attach to and detach or detach from. For example, to make a
plug that can be plugged into an electrical socket, we could just do this:

+ socket: Attachable, Fixture 'socket*sockets' 'socket'
 isMajorItemFor(obj) { return obj == plug; }
;

+ plug: PlugAttachable, NearbyAttachable, Thing 'plug*plugs' 'plug'
 canAttachTo(obj) { return obj == socket; }
;

17.3.2 PermanentAttachment

A PermanentAttachment is an object that’s described as attached to something else

but can never become detached. The object it’s attached to should also be a
PermanentAttachment. One of the object should list the other in its attachedObjects

list (the game will then make the relationship symmetrical at startup).

Alternatively we can use PermanentAttachmentChild. If one object effectively

contains the other (because the other is a effectively a component of the first), we can
define the containing object a PermanentAttachment and the contained object as a

PermanentAttachmentChild, and the two will automatically link up their attachment

lists at start up. This could be done with something like:

+ broom: PermanentAttachment, Thing 'wooden broom*brooms' 'wooden broom'
 "A brush is attached to one end of the broom. "
 contentsListedInExamine = nil
;

292

++ brush: PermanentAttachmentChild, Thing 'brush*brushes' 'brush';

Whether this achieves a great deal that couldn’t be achieved by making the brush a
Component and perhaps customizing a few of its message properties is not all that
clear. At any rate note that PermanentAttachment and PermanentAttachmentChild

are mix-in classes that must be mixed in with a Thing-derived class, and that defining
contentsListedInExamine = nil on the parent object, or isListedInContents =

nil on the child object, is generally a good idea if we don’t want to see the child

object described as being in the parent object (e.g. “a broom (in which is a brush)”).

The main functional difference between using these classes and Component are the
different responses they give to attach and detach commands (e.g. “The brush is
already attached to the broom” as opposed to “You cannot attach that to anything”).

17.3.3 SimpleAttachable

SimpleAttachable is not a class defined in the library, but a subclass of Attachable

defined in the SimpleAttachable.t extension that should be in the ../lib/extensions
directory of your TADS 3 installation, and which also comes with the attachment.t
sample game that forms the basis of the next exercise.

The SimpleAttachable class is meant to make handling one common case easier, in

particular the case where a smaller object is attached to a larger object and then
moves round with it.

More formally, a SimpleAttachable enforces the following rules:

1. In any attachment relationship between SimpleAttachables, one object must be
the major attachment, and all the others will be that object’s minor
attachments (if there’s a fridge with a red magnet and a blue magnet attached,
the fridge is the major attachment and the magnets are its minor attachments).

2. A major attachment can have many minor attachments attached to it at once,
but a minor attachment can only be attached to one major attachment at a
time (this is a consequence of (3) below).

3. When a minor attachment is attached to a major attachment, the minor
attachment is moved into the major attachment. This automatically enforces
(4) below.

4. When a major attachment is moved (e.g. by being taken or pushed around), its
minor attachments automatically move with it.

5. When a minor attachment is taken, it is automatically detached from its major
attachment (if I take a magnet, I leave the fridge behind).

6. When a minor attachment is detached from a major attachment it is moved into
the major attachment’s location.

293

7. The same SimpleAttachable can be simultaneously a minor item for one

object and a major item for one or more other objects (we could attach a metal
paper clip to the magnet while the magnet is attached to the fridge; if we take
the magnet the paper clip comes with it while the fridge is left behind).

8. If a SimpleAttachable is attached to a major attachment while it’s already

attached to another major attachment, it will first be detached from its existing
major attachment before being attached to the new one (ATTACH MAGNET TO
OVEN will trigger an implicit DETACH MAGNET FROM FRIDGE if the magnet was
attached to the fridge).

9. Normally, both the major and the minor attachments should be of class
SimpleAttachable.

Setting up a SimpleAttachable is then straightforward, since all the complications are

handled on the class. In the simplest case all the game author needs to do is to define
the minorAttachmentItems property on the major SimpleAttachable to hold a list of

items that can be attached to it, e.g.:

 minorAttachmentItems = [redMagnet, blueMagnet]

If a more complex way of deciding what can be attached to a major
SimpleAttachable is required, override its isMajorItemFor() method instead, so

that it returns true for any obj that can be attached, e.g.:

 isMajorItemFor(obj) { return obj.ofKind(Magnet); }

One further point to note: if you want a Container-type object to act as a major
SimpleAttachment, you’ll need to make it a ComplexContainer.

Exercise 22: The player character is the only survivor aboard a small scouting space-
ship that has just been attacked, holing its hull so that all the air is evacuated, killing
everyone else aboard. The player character has survived since he was suited up
making repairs to the antenna on the outside of the ship when the attack occurred.
The attacking vessel has departed, but now the player character must effect repairs to
take his own ship to safety.

The player character starts the game in the airlock. He is wearing a space suit to
which is attached an air cylinder (nearly exhausted) and a helmet; a lamp is currently
plugged into the helmet but can be unplugged from it and plugged in elsewhere for
recharging. Just as the game begins, the lights aboard ship go out, indicating a power
failure. The outer and inner airlock doors are operated by levers, with dials indicating
the air pressure outside the hull, inside the airlock, and inside the ship.

Just inboard of the airlock is a storage chamber with a rack containing a spare air
cylinder (full enough to last the whole game and more), a charging socket, an

294

equipment locker, a freezer, and a winch (fixed in place). Inside the equipment locker
are two connectors (for joining lengths of cable), a short length of cable, and a roll of
hull repair fabric. To operate the winch while the main power supply is out, it is
necessary to attach one end of the cable to the winch and the other to the charging
socket. The charging socket can also be used to recharge the lamp, when the lamp is
plugged into it. A hawser runs from the winch; one end of the hawser can be carried
by the player character into other locations (in which case there’ll be a length of
hawser running all the way back to the winch); if the free end of the hawser is
attached to something (such as a pile of debris) and the winch then operated (by
pressing a button on it while the winch has power), the hawser will be rewound,
dragging whatever’s attached to the other end with it.

Aft of the storage hold is the Engine Room. Here there’s a power switch that can be
turned on to restore power to the whole ship, but only once the main fault has been
repaired, and an airflow control lever than can be pulled to repressurize the ship, but
only once the hole in the hull has been repaired.

Forward of the Storage Hold is the Living Quarters, which took the brunt of the blast
from the attacking vessel, and now has a large hole in part of the hull. This can be
repaired by attaching a square of fabric from the locker to the hull. To one side of the
Living Quarters is the door into a cabin, but this won’t open until pressure has been
restored to the ship. Along the floor of the Living Quarters is an electrical conduit
which contains the main power cable for the ship (now exposed by the same blast that
tore through the hull). A length of the cable has been burned away, and must be
repaired by attaching the short length of cable from the locker to the two ends of the
severed cable by means of the electrical connectors (also from the locker).
Unfortunately, the mass of debris left over from the blast blocks access to the conduit
to repair the cable, and can only be removed by using the winch and hawser.

Once the hull has been patched the ship can be repressurized (using the lever in the
Engine Room), and once the ship has been repressurized the cabin door can be
opened, allowing access to the cabin. Inside the cabin is a bed and a cabinet, the
latter containing a security card.

Forward of the Living Quarters is the Bridge, containing (amongst anything else you
think should be on the Bridge of a scouting space-ship) a card reader and green
button. If the green button is pressed once main power has been restored and the
security card is attached to the card reader, the controls come back to life, and the
game is won.

This is probably the trickiest exercise in this manual. Once you’ve spent as much time
as you want to on it, take a look at the attachment.t sample game.

295

18 Menus, Hints and Scoring

18.1 Menus

There are various places in a work of Interactive Fiction where it can be useful to
display a menu, usually at the beginning (perhaps in response to an about command
if we have a lot of information to offer our players) and perhaps at the end, if, for
example, we want to offer a number of options in response to an amusing command.

We can construct a menu in TADS 3 by using a combination of MenuItem and

MenuLongTopicItem objects. We create the structure of the menu with a tree of

MenuItem objects. We can use MenuLongTopicItems at the ends of the branches to

display substantial amounts of text.

On a MenuItem we normally only need to define the title property (as a single-

quoted string); this is the title of the option as it appears in its parent menu. It’s also
the heading given to the menu when the MenuItem displays its own list of options,

unless we override the heading property to do something different. So for example

we could define:

+ MenuItem
 title = 'Instructions'
 heading = 'Instructions Menu'
;

Or, using the MenuItem template, simply:

+ MenuItem 'Instructions' 'Instructions Menu';

Within a MenuItem (using the + notation) we can either place more MenuItems (to
implement sub-menus) or MenuLongTopicItems, which will actually display some text
(or do whatever else we want them to do). We define the title and heading

properties of a MenuLongTopicItem in the same way as for a MenuItem. We also
define the menuContents property to display some text or do whatever else we want

to do. This can be a string (single-quoted or double-quoted) to be displayed, or a
routine that does whatever we want. If it’s a single-quoted string, this can be the last
item in the template. If we want a sequence of MenuLongTopicItems to function as a
series of ‘chapters’, then we can override their isChapterMenu property to be true

(this causes a ‘next’ option to be displayed at the end of each MenuLongTopicItem
which the player can select to proceed directly to the next MenuLongTopicItem without
having to go back to the parent menu).

In order to get a menu displayed in the first place, we call the display() method on

the top level menu we want to display. If we do so in response to a command, it’s a
good idea to display a brief message like "Done." immediately afterwards.

296

So, for example, to display an "About" menu (in response to an about command), we
could do something along the following lines:

versionInfo: GameID
 ...
 showAbout()
 {
 aboutMenu.showAbout();
 "Done. ";
 }
;

aboutMenu: MenuItem 'About';

+ MenuLongTopicItem 'About this game'
 'This is the most exciting game I have ever written (not that that\'s
 saying much). The protagonist is an entrant into the South Dakota
 Annual Paint Drying Contest. Consequently the special command watch
 paint dry is one you\'ll need to make frequent use of in this game. '
;

+ MenuLongTopicItem 'Credits'
 menuContents() { versionInfo.showCredit(); }
;

+ MenuItem 'How to Play' 'Playing Instructions';

++ MenuItem 'Instructions for Players New to IF'

+++ MenuLongTopicItem 'Standard Commands'
 'LOOK, INVENTORY, blah, blah, QUIT'
;

+++ MenuLongTopicItem 'Movement Commands'
 'NORTH, SOUTH blah blah...'
;

+++ MenuLongTopicItem 'Conversational Commands'
 'ASK FRED ABOUT PAINT, TELL BOB ABOUT PAINT, blah blah...'
;

++ MenuLongTopicItem 'Instructions for Player New to <i>Paint Dry!</q>'
 'Use the command watch paint dry. Then use it again. And again.
 And again and again and again and again.'
;

There’s just one point to note: some TADS 3 interpreters can’t cope with more than
nine items under a single menu, so it’s as well to design our menus so that they don’t
display more than nine items at a time. If we need more options than that, then we
should put them under sub-menus.

If we want to include one top-level menu among the options of another menu, we can
do so by explicitly listing it in the contents property of the menu we want it to display

under. For example, suppose intructionsMenu is the top-level menu displayed in

response to an instructions command, but we also want to be able to offer this
instructions menu from within the about menu. We can do this by defining:

297

aboutMenu: MenuItem 'About'
 contents = [instructionsMenu]
;

Whatever options/sub-menus we list explicitly in the contents property will be listed

in addition to whatever options we define under the menu with the + notation.

We can control the order in which menu items are displayed by overriding their
menuOrder property. Items are sorted in ascending order of this property just before

the menu is displayed; by default menuOrder is set to sourceTextOrder (the order in

which the menu items are defined within the same source file).

If we want to add an item to a menu during the course of play, we can do so by calling
the addToContents(obj) method on the MenuItem to which we want to add obj. To

remove obj from a menu during the course of play use contents -= obj.

Finally, there is an instructions menu built into the library that’s just a little tricky to
access. The library file instruct.t defines an instructions command, which by default
does a huge text dump. It can, however, be made to present the same set of
instructions in the form of a menu (topInstructionsMenu). To do this we need to do

a complete recompile for debugging after ensuring that the constant
INTRUCTIONS_MENU is defined. In Workbench, go to Build -> Settings from the menu
and click Defines in the dialogue box; then add INSTRUCTIONS_MENU to the list of
symbols to define; then use the Build -> Full Compile For Debugging option from the
main Workbench menu. If compiling from the command line using t3make, add -D
INSTRUCTIONS_MENU to the command line (or project file) and use the -a option the
first time you recompile.

18.2 Hints

There is, of course, no need to provide any hints at all in a work of Interactive Fiction;
whether or not to do so depends on the nature of our game, our target audience, and
our own sense of what makes our game complete. If we do decide to provide hints,
there’s obviously a number of ways in which we can do it. The way provided by the
library is an invisiclues type system (in which a series of progressively clearer hints on
any given topic can be revealed one at a time) embedded in a context-sensitive hint
system (in which the topics on which hints are offered become available and cease to
be available depending on their relevance, in relation to where the player is in the
game). If we don’t want this hint system at all, we can exclude the file hintsys.t from
our build. In what follows, however, we shall assume we do want to use the hint
system built in to the TADS 3 library.

This hint system is basically a specialization of the menu system discussed in the
previous section. We construct a hint system for our game by creating a menu of
hints, or rather a menu of goals that the player may want information on at any
particular time. Our top-level hint menu should be an object of the TopHintMenu class

298

(and there should only be one of these defined in our game). An object of this class
automatically registers itself as the root menu of the hint system, and will thus be the
menu that’s invoked when the player issues a hint command. We only need to give
this menu object an object name if we want to refer to elsewhere in our code, for
example to make it accessible as an option from the about command (by listing it in
the contents property of another menu).

Located in the TopHintMenu we should put either HintMenu objects (if we want to

create submenus in our hint system), HintLongTopicItem objects (the hint system

equivalent of MenuLongTopicItem, which we might use, say, for a permanent set of

instructions on using the hint system) or Goal objects (which we’ll say more about

below). The only difference between HintMenu and TopHintMenu is that the latter

automatically registers itself as the root of the hint menu tree.

The difference between a HintMenu and a MenuItem is that the former is intended to

part of an adaptive menu system. A HintMenu is only displayed when it has active

contents, and its contents property only holds its active contents. An item is active if

its isActiveInMenu property is true. This property is true by default for

HintLongTopicItem, and for a HintMenu with active contents, and for an open Goal.

For the most part game authors don’t need to worry about this as the library takes
care of it all. We can just define our menu tree in much the same way as we would for
ordinary menus, except that most of the items at the bottom of the tree will be Goals:

+ TopHintMenu 'Hints';

++ HintMenu 'In the Garden';

+++ Goal 'How do I water the exotic cabbage?';
+++ Goal 'How do I reach the tower window?';

++ HintMenu 'In the Bedroom';

+++ Goal 'How do I tell which woman is the sleeping princess?'
+++ Goal 'Where can I hide from the jealous prince?'

Whether we need HintMenus between the TopHintMenu and the Goals depends on how
many Goals are likely to be active at any one time. If we’re confident it will never be
more than nine, then we probably don’t need any intermediate sub-menus. If it may
be more than nine, then we need to implement some kind of sub-menu structure,
since some TADS 3 interpreters can’t cope with menus that have more than nine
items.

Setting up the menu structure is relatively straightforward; the real work of building
an adaptive hint system in TADS 3 comes with defining the various Goal objects.
These are objects that represent the various objectives the player may be trying to
pursue at particular points in the game. A Goal thus consists primarily of the question
to which the player is looking for an answer (e.g. ‘How do I get past the five-headed
cat?’), defined in its title property, and a list of hints relating to the question,

299

defined in the menuContents property. Since these two properties are common to all

Goals, we can define them via the Goal template, e.g. :

+ Goal 'How do I get past the five-headed cat?'
 [
 'Why is the cat such a problem? ',
 'What else might keep its mouths occupied? ',
 'What do cats like to chase? ',
 mouseHint,
 'You\'ll need five mice, of course, one for each mouth. '
]
;

These hints will be displayed one at a time, as the player requests each in turn. For
the most part, they can just be single-quoted strings, in which case they’ll just be
displayed. But if we want the displaying a hint to have some further side-effect, we
need to use a Hint object (which is what we are assuming mouseHint to be in the

above example).

The default behaviour of a Hint object is to display the text in its hintText property

(a single-quoted string) and to open the Goals listed in its referencedGoals property

(opening a Goal makes it available to the player, as we shall see below). In this
example the mouseHint Hint may suggest to the player that s/he needs to find some

mice, which will then make finding mice a new Goal for the player to pursue. There
was no point displaying this new Goal before, since that would be a potential spoiler
for the cat puzzle, but once we offer a hint that the cat may be distracted by mice, it’s
fair enough to offer another series of hints about finding mice. Since the hintText

and referencedGoals properties are so commonly defined on Hint objects, they can

be defined via a template:

++ Hint 'Perhaps the cat would be distracted by mice. ' [mouseGoal] ;

Here mouseGoal would be another Goal object that we’d define elsewhere. Putting two

plus signs before the Hint object implies that we’re locating it inside the previous

Goal; there is no need to do this, but doing so does no harm, and it’s a convenient

way of keeping the Hint close to its associated Goal in the source code without it
interfering with the hint containment hierarchy.

If we want displaying a Hint to carry out any other side-effects besides opening one or
more Goals, the best place to code them is in the Hint’s getItemText() method. If we

override this method we must remember to conclude it with return inherited; or

else make it return a singe-quoted string containing the text of the hint.

As we’ve already mentioned, but not yet fully explained, Goal objects are used to

create an adaptive hint system, that is a system that displays hints only when they
become relevant, and removes them once they cease to be relevant. To that end, a
Goal can be in one of three states: UndiscoveredGoal, OpenGoal or ClosedGoal, the

current state of a Goal being defined by its goalState property. A Goal generally

300

starts out in the UndiscoveredGoal state (although we could define it as being an

OpenGoal if we want it to be available at the start of play). A goal is undiscovered

when it concerns an objective the player doesn’t yet know about (so to display it
would be at best an irrelevance and at worst a spoiler). Once the player has reached a
point in the game when a particular Goal becomes relevant, it changes to the

OpenGoal state. Open goals are those that are displayed in response to a hint

command, since they relate to the problems the player is currently working on (or
could be working on) at that point in the game. Once the player achieves the objective
defined by the Goal, the Goal is no longer relevant, so it changes to the ClosedGoal

state. Every time the game is about to display a hint menu it runs through the Goals
contained in that menu to see which should be changed to OpenGoal and which should

be changed to ClosedGoal. It then displays all those for which goalState is

OpenGoal.

It is, of course, up to us to define under what conditions our Goals become opened
and closed. We can do this by means of the following properties:

● openWhenAchieved – the goal becomes open when this Achievement object

(see the next section, on scoring) is achieved (we set this property to the
Achievement object in question).

● openWhenDescribed – the goal becomes open when this object has been

described (i.e. when the player has examined it).

● openWhenKnown – the goal becomes open when this Topic or Thing becomes

known to the player (i.e. gPlayerChar.knowsAbout(openWhenKnown) becomes

true).

● openWhenRevealed – a single-quoted string value; the goal becomes open when

this tag is revealed (e.g. if this were set to 'cat' then the goal would become
open when gRevealed('cat') became true).

● openWhenSeen – the goal becomes open when this object has been seen by the

player character.

● openWhenTrue – the goal becomes open when this condition becomes true; this

can be used to define any condition that doesn’t fit the other openWhenXXXX
properties. For example, if this goal should become open when the player has
seen the blue plaque and taken the brass key, then we could define
openWhenTrue = (bluePlaque.seen && brassKey.moved).

Note that the goal will be opened when any of the above are satisfied, so, for
example, if we defined:

+ Goal 'How do I get past the five-headed cat?'
 [
 'Why is the cat such a problem? ',
 'What else might keep its mouths occupied? ',

301

 'What do cats like to chase? ',
 mouseHint,
 'You\'ll need five mice, of course, one for each mouth. '
]
 openWhenSeen = cat
 openWhenKnown = mice
 openWhenRevealed = 'five-cat'
 openWhenDescribed = bewareOfTheCatSign
;

Then this Goal would become open either when the player character had seen the cat,
or when the player character knows about the mice or when the 'five-cat' tag has
been revealed or when the player character has examined the bewareOfTheCatSign.

Goals are closed by a similar set of properties: closeWhenAchieved,

closeWhenDescribed, closeWhenKnown, closeWhenRevealed, closeWhenSeen, and

closeWhenTrue, which all work in the same way as their openWhenXXXX equivalents.

Thus a more typical Goal definition might look like:

+ Goal 'How do I get past the five-headed cat?'
 [
 'Why is the cat such a problem? ',
 'What else might keep its mouths occupied? ',
 'What do cats like to chase? ',
 mouseHint,
 'You\'ll need five mice, of course, one for each mouth. '
]
 openWhenSeen = cat
 closeWhenTrue = (cat.curState == chasingMiceState)
;

Behind this series of openWhenXXX and closeWhenXXX properties are a pair of

properties called simply openWhen and closeWhen. If we wanted to, we could use

these to extend the set of conditions a Goal can test for. For example, suppose in our
game we quite often wanted to open and close goals when certain items were moved,
then we could modify Goal to allow this:

modify Goal
 openWhenMoved = nil
 closeWhenMoved = nil
 openWhen = (inherited || (openWhenMoved != nil && openWhenMoved.moved))
 closeWhen = (inherited || (closeWhenMoved != nil && closeWhenMoved.moved))
;

Then we’d be able to use our new openWhenMoved and closeWhenMoved properties

along with all the others.

302

18.3 Scoring

Many works of Interactive Fiction, especially more story-based ones, don’t need to
keep score. If scoring is irrelevant to our game, we can simply exclude the file score.t
from our game, and all traces of score-keeping will be removed. If, however, we do
want to keep a score in our game, then there are several ways we can go about it.

If all we want to do is to keep a record of the points the player has scored, we can
simply add them to libScore.totalScore (the total number of points scored so far).

So, for example, to award two points, we could simply write:

libScore.totalScore += 2;

More commonly, though, we want to tell the player not only how many points have
been scored, but what they have been awarded for. One way we can do that is by
calling the function addToScore(points, desc) where points is the number of points

we want to award and desc is either a description of the achievement (as a single-
quoted string) or an Achievement object. For example we might write:

addToScore(2, 'Distracting the cat');

Note that if we call addToScore(points, desc) more than once with the same desc,

it will be considered the same achievement (i.e. it will appear only once when the
player’s achievements are listed in response to a full score command), although the
points associated with it will be increased accordingly.

We can also use Achievement objects to award points, and this probably gives us the

greatest degree of control over how scoring works in our game. One big advantage of
using Achievement objects is that they can track how often they’ve been used to

award points, which makes it quite straightforward to avoid awarding the player
repeatedly for the same action. Another big advantage is that, under certain
circumstances, we can use Achievement objects to calculate the maximum score in

our game automatically.

To award points using an Achievement object, we can use one of the following

methods:

● addToScoreOnce(points) – award points points for this Achievement, provided

we haven’t previously awarded any points for it (in which case the score
remains unchanged). If points are awarded, return true, otherwise return nil.

● awardPoints() - award the number of points defined in this Achievement’s

points property.

● awardPointsOnce() - award the number of points defined in this Achievement’s

points property provided no points have been awarded for this Achievement

before; return true if points were awarded.

303

In addition, we can define or query the following properties for an Achievement:

● desc – a double-quoted string or a routine that displays a string describing this

Achievement.

● maxPoints – the maximum number of points that can be awarded for this

Achievement. By default this is the same as points, but we may need to use a
larger value here if we are going to allow this Achievement to be awarded more
than once.

● scoreCount – the number of times points have been awarded for this

Achievement

● totalPoints – the total number of points that have been awarded for this

Achievement

In the simplest and most common case, we expect to award points for each
Achievement only once, in which case the only properties that need concern us are
desc and (possibly) points. We can also look at scoreCount to see if the

Achievement has been achieved. Since desc and points are the commonest

properties to award on an Achievement, they can be defined via a template. The
points property is optional in the template, but if it is present it should come before
the desc, and the number of points immediately preceded by a + sign. So, for

example, we could define:

catAchievement: Achievement +2 "distracting the cat";

mouseAchievement: Achievement "catching some mice";

Callining catAchievement.awardPointsOnce() would then award two points for

distracting the cat. For mouseAchievement, though, we should need to call

mouseAchievement.addToScoreOnce(2) or whatever, since no points property has

been defined. If there are five mice to catch and the player gets one point for each
mouse, we might go for a more elaborate definition of mouseAchievement:

mouseAchievement: Achievement
 "catching <<mouseCount()>>. "
 mouseCount()
 {
 if(scoreCount > 1)
 "<<spellInt(scoreCount)>> mice";
 else
 "a mouse"
 }
 maxPoints = 5
 points = 1
;

If we ensure that all the points in our game are awarded through calling
awardPoints() or awardPointsOnce() on Achievement objects, and that we adjust

maxPoints appropriately on any Achievement for which points can be awarded more

304

than once, then we can leave the library to calculate the maximum number of points
in our game (provided, that is, that the winning path through the game causes all the
Achievement objects to be awarded). If there are alternative paths through the game
which would result in the awarding of points through different Achievements, then we
would need to use the addToScoreOnce() method (or the addToScore() function) to

award points on those alternative Achievements, and we would also need not to define
their points properties, in order to ensure that they did not get added to the total
points available. Ensuring that all winning routes through our game ended up with the
same maximum score could prove quite tricky, and may or may not be possible
depending on the details of the game design; having an automatically calculated
maximum score may work best with a highly linear game with one set of
Achievements that must be met.

If we’re not confident that the library can calculate the maximum score for us, or
we’re not sticking to restrictions that allow it to do so, we need to calculate it for
ourselves (or find out what it is by playing through our game and seeing what it
comes to), and then override gameMain.maxScore with whatever the maximum score

is.

There’s one more property on gameMain we may want to override in relation to

scoring, and that’s scoreRankTable. This is the property to use if we want a message

like ‘This makes you a total novice’ appended to the player’s score. The property
should consist of a list of entries, each of which is itself a two element list, the first
element being the minimum score required to attain the rank, and the second being a
string describing that rank, for example:

gameMain: GameMainDef
 ...
 scoreRankTable = [
 [0, 'a total novice'],
 [10, 'a well-meaning tyro'],
 [25, 'a casual adventurer'],
 [50, 'a would-be hero'],
 [100, 'a paladin']
]
;

As in the foregoing example, the table must be arranged in ascending order of scores.
If we want to change the wording of the message that announces the rank from the
standard "This makes you..." form, we can do so by overriding
libMessages.showScoreRankMessage(msg), e.g.:

modify libMessages
 showScoreRankMessage(msg) { "This gives you the rank of <<msg>>. "; }
;

305

Exercise 23: This final exercise will give you an opportunity to brush up on EventLists
and one or two other things from earlier in the manual, as well as menus, hints, and
scoring.

The map for this game is fairly simple. Play starts in 'Deep in the Forest' from which
paths lead northeast, southeast and west. To the west is a dead end (blocked by a
fallen tree), but attempting to travel down it the first time results in the player
character finding a branch, which he takes. In the starting location itself a variety of
forest sounds can be heard, or small animals seen moving about. Northeast from the
starting location is the 'By the River' location. From here paths run southwest, back to
the starting location, and southeast. Progress north is blocked by the stream. If the
player attempts to cross the stream, the first two attempts are blocked with suitable
messages, but the third time the attempt is allowed, and the player character drowns.
This happens whether the player types north or swim river, but the first two refusal
responses should differ according to the command used. Thick undergrowth prevents
walking along the bank of the stream to east and west. There should be a suitable
selection of riverside atmospheric messages.

Southeast of 'By the River' is 'Outside a Cave', from which paths run northwest (back
to the river) and southwest (to a clearing). The cave lies to the east. The cave is in
darkness, and the only way out from it is to the west. The second time the player
character leaves the cave there’s a warning message about an imminent rockfall. The
third time the player leaves the cave the rockfall occurs, blocking the entrance to the
cave. Inside the cave is a bucket, but the player character can’t find it until light is
brought into the cave.

Southwest of 'Outside a Cave' is a clearing, from which paths run northeast (back to
'Outside a Cave') and northwest (back to the starting location, 'Deep in the Forest').
In the clearing a large bonfire is billowing clouds of acrid smoke, the smell of which is
described as increasingly overwhelming the longer the player character remains in the
clearing. The player character needs to leave the clearing to the south in order to find
the way back to the car park and win the game, but the smoke keeps driving him
back. There’s also a very simple NPC who starts out in this location, a tall man who
walks round and round the four locations in the forest, but stops for one turn each
time he reaches the river to scoop up some water in his hands.

To win the game the player needs to light the branch from the bonfire to make it act
as a torch, then go to the cave to collect the bucket, fill the bucket with water from
the river, then pour the water on the bonfire to douse it, and finally leave the clearing
to the south.

Provide the game with a help/about menu, a set of adaptive hints, and a score for
each step. Make the game automatically calculate the maximum score.

When you’ve got as far as you want to with your attempt, compare it with the event
(eventful walk) sample game.

306

19 Beyond the Basics

19.1 Introduction

We’ve now covered all the basics of writing Interactive Fiction in TADS 3; if you’ve
mastered everything up to now you should be well on your way to being able to carry
out most common TADS 3 programming task without too much difficulty. But the
nature of IF programming means we often want to carry out less common
programming tasks; it’s likely to be the unusual that makes our game stands out.

We can’t cover everything TADS 3 can do here, but we can briefly survey some of the
other features that are likely to be of interest. In the present chapter we shan’t try to
explain them in any detail; we’ll simply introduce them and give some brief pointers
(in particular to where more information can be found).

19.2 Parsing and Object Resolution

19.2.1 Tokenizing and Preparsing

Parsing is the business of reading the player’s command, matching it to an action the
game can execute and deciding which game objects it refers to; in case of ambiguity
object resolution is the business of narrowing down the possibilities to those that are
most likely. The standard cases have already been dealt with in the two chapters on
Actions.

The first stage of interpreting a player’s command is to divide it up into tokens
(roughly speaking, the individual words that make up the command, so that the
command take the knife contains the tokens 'take', 'the' and 'knife'). To do this the
parser uses the Tokenizer class. For details of how this works and how it can be

customized, see the chapter “Basic Tokenizer” in Part VI of the System Manual. If str
is a string we want to tokenize, we can do so with a statement like:

local toks = Tokenizer.tokenize(str);

If we then wanted to execute this as it were a command issued by the player, we
could do so with:

executeCommand(gPlayerChar, gPlayerChar, toks, true);

For some information on what the parser does with the tokens when matching player
input to action syntax and noun phrases, you could take a look at the article on
GrammarProd in Part IV of the System Manual, but it’s not the easiest read, and it’s
usually possible to be able to do what you want in TADS 3 without understanding that
part of the system in any depth. The Technical Manual article on “The Command

307

Execution Cycle” gives a rough outline of the parsing stage of command execution,
but again it’s hardly required reading at this point.

It is sometimes useful to be able to intercept the player’s input and tweak it before
the parser gets to work on it. For this purpose we can use a StringPreParser. This

class performs its work in its doParsing(str, which) method, where str is the string

(initially the command typed by the player) containing the command we may want to
tweak. This method should return either the original or an adjusted string, or nil. If it
returns a new string, this will be used instead of the command that was entered. If it
returns nil, then the command will be aborted (on the assumption that the
StringPreParser has fully dealt with it). For example, if we wanted to write a

particularly prudish game, we could define a StringPreParser like this

StringPreParser
 doParsing(str, which)
 {
 if(str.toLower.find('shit'))
 {
 "If you're going to use language like that I shall ignore you! ";
 return nil;
 }
 return str;
 }
;

We can have as many StringPreParsers as we like in our game, and the player’s input
will be processed by each in turn (unless one of them returns nil, in which case
processing of the player’s command will stop there). We can control the order in which
StringPreParsers are used by means of their runOrder property. For more details, look

up StringPreParser in the Library Reference Manual.

One type of tweaking that could often be useful to apply to a player’s command before
parsing it would be to correct any typos. If this is something you’re interested in
adding to your game, you might want to check out Steve Breslin’s spellingCorrector
extension, which can be downloaded from the IF-Archive.

19.2.2 Object Resolution

The standard TADS 3 library can understand a reasonable range of noun phrases as
referring to a particular object: zero or more adjectives followed by a noun, or a pair
of nouns separated by ‘of’, or a noun followed by a number, or a locational phrase like
“the ball on the table”, but we may have objects in our game that don’t fit any of
those patterns, such as “Cranky the Clown” or “S and P magazine” or “the path to the
west”. For ways of dealing with such non-standard noun phrases, see the article on
“Handling Odd Noun Phrases” in the TADS 3 Technical Manual.

We’ve already seen that we can bracket selected words in the vocabWords property of

an object to make them weak tokens, which can’t then match the object on their own
(but only in conjunction with other tokens that are not weak). There are a few more

308

special characters we can include in a vocabWords property.

The hash symbol # can be used to match any number in the player’s input (whether

entered as a numeral or as a word). So, for example, if we defined the following:

+ locker: OpenableContainer: Fixture '# locker*lockers' 'locker'
;

This would match 'locker 1' or '2 locker' or 'locker nine' or 'locker 999' and so on. Note
that any number defined as an adjective in the vocabWords property of an object can

come either before or after the noun in the player’s input (since noun phrases like
‘locker 2’ or ‘box three’ or ‘room 5’ are fairly common, and ‘5 room’ wouldn’t look
right).

We can also use "\u0001" to match any literal adjective in the player’s input (that is,
an adjective the player explicitly types in quotation marks), so, for example, the
following:

+ door: Door '"\u0001"' door' 'door'
;

Would be matched by the commands x "red" door or x 'bumbleweed' door but
not x red door.

An asterisk * can be used as a wildcard that will match anything at all, but it has to be
explicitly assigned to the object’s noun property. For example, this object will respond
to absolutely anything the player calls it:

+ Thing
 name = 'ubiquitous object'
 noun = '*'
;

Though we’d probably want to use matchNameCommon() (see below) to narrow down

what this matched.

If we want to define adjectives that an object can match but no noun, we can use a
dash (–) in the noun slot of the vocabWords property. This is particularly useful when

an object inherits from a class that already defines nouns and just wants to define
adjectives (remember that the vocabWords defined on an object are in addition to any

it inherits from its superclasses).

If these various ways of using the vocabWords property of a simulation object don’t

give us enough control over which objects are matched, we can override
matchNameCommon() on the object in question (roughly speaking, this is the equivalent

of an Inform 6 parse_name routine). For details of how to do this, look up

matchNameCommon() (defined on VocabObject) in the Library Reference Manual. To

make sense of it you’ll also need to look at matchName() in the same place. For

example, suppose we have a car key object that we don’t want to be matched by

309

either ‘car’ or ‘key’ but only by the phrase ‘car key’; we could define:

+ carKey: Key 'car key*keys' 'car key'
 matchNameCommon(origTokens, adjustedTokens)
 {
 /*
 * We're looking for the exact phrase 'car key' which the player
 * will only have typed if adjustedTokens is ['car', &adjective,
 * 'key', &noun] with possible variations in the case of 'car' and
 * 'key' and whether 'key' is singular or plural.
 */

 if(adjustedTokens.length == 4
 && adjustedTokens[1].toLower == 'car'
 && adjustedTokens[3].toLower is in ('key', 'keys'))
 return self;

 return nil;
 }
;

Once the parser has identified all the simulation objects in scope that could match the
noun phrase entered in the player’s command, it constructs a resolve list containing
these objects. If there’s more than one object in this list, the library calls
filterResolveList() (also defined on VocabObject) on each of the objects in the

list. If we wish, we can override this method on any of the objects and return a
completely new list of objects. One situation in which this might be useful is where a
noun phrase could refer to an object the player may not know about yet, for example,
consider the following:

+ redDoor 'red door*doors' 'red door'
 "It has a brass knocker on it. "
;

++ brassKnocker: Component 'brass knocker*knockers' 'brass knocker'
;

+ blueDoor 'blue door*doors' 'blue door'
 "It has a silver knocker on it. "
;

++ silverKnocker: Component 'silver knocker*knockers' 'silver knocker'
;

If the player examines the red door and issues the command x knocker without
having examined the blue door, the player would almost certainly mean the brass
knocker, so the parser's question ("Which knocker do you mean, the brass knocker or
the silver knocker?") could look a little strange (at this point the player doesn’t even
know there is a silver knocker). One way to deal with this would be to override
filterResolveList() on the two knocker objects so that each knocker removes itself

from the resolve list until its door has been examined (which we can test by looking at
the described property of the door).

310

For more details on how this method works, look up filterResolveList() in the

Library Reference Manual.

A slightly different situation is where the player is well aware (or ought to be well
aware) of a number of objects that could match what s/he types, but is more likely to
mean one thing than another. For example, suppose that the player character is
carrying around a red book and a blue book, each of which she’s likely to need to
consult quite frequently. Since x book won’t select between the books, the player is
quite likely to type x red to refer to the red book. On occasion, there may well be
other red objects in scope, but in this scenario it’s still more likely that red by itself is
intended to refer to the red book, so it will be most helpful to the player if we can
nudge the parser towards preferring the red book to other red objects (other things
being equal) while telling the player what choice the parser has made in cases of
potential ambiguity. For this purpose we can use the vocabLikelihood property; the

default value is 0, so we could give the red book a vocabLikelihood of 10, say, to

make the parser prefer it in cases of ambiguity it couldn’t resolve in any other way.
For further details, look up vocabLikehood (defined on VocabWords) in the Library

Reference Manual.

The techniques outlined above all presuppose that we’re happy with the parser’s idea
of scope (since the parser will only match objects it considers to be in scope for the
current command). In slightly simplified terms, scope defines what objects the player
character can actually interact with for a given command; normally this will be the
objects the player character can see (or perhaps sense in some other way), the main
exception being that we can obviously talk, read or think about things without being
able to see them. The vast majority of the time, the parser’s idea of scope will do
what we want, but every now and again we may want something different (e.g. to
allow the player character to converse with a distant actor via a telephone). For
information on adjusting scope, see the article on “Redefining Scope” in the TADS 3
Technical Manual.

19.3 Similarity, Disambiguation and Difference

One of the things no player of our game wants to see is a disambiguation disaster like
this:

>take mat
Which mat do you mean, the mat, the mat or the mat?

We should normally be able to avoid this sort of thing by ensuring that we give each
object a unique name property, in this case perhaps 'rubber mat', 'beer mat' and
'place mat', but there may be cases where we don’t want to do this, perhaps because
the full distinctive name of the object would seem too cumbersome for use in
inventory listings and the like (perhaps our game contains a large black decorative
door mat, a medium-sized black decorative door mat and a large brown decorative

311

door mat). In such cases we can instead define the disambigName property to contain

a uniquely distinctive name. Then the regular name will be used in inventory and
room listings, while the disambigName will be used in disambiguation prompts like the

one above. If we do define a disambigName we should be careful to ensure that it

does actually provide a combination of words that identifies each object uniquely, and
that this combination of words will match the vocabWords property of the object.

If we want we can define the order in which items are listed in a disambiguation
prompt using the disambigPromptOrder property, which by default takes its value

from the pluralOrder property. This can be useful when items are explicitly

enumerated, or otherwise have some natural order, e.g.:

>open drawer
Which drawer you mean: the top drawer, the middle drawer or the bottom drawer?

For further details, look up these properties in the Library Reference Manual.

Some objects may be genuinely indistinguishable, at least for the purposes of our
game. One pound coin or silver dollar is much like another. Each grape in the bunch or
apple in the orchard may be effectively identical. When we want items to be
effectively identical we should (a) assign them to the same class and (b) set their
isEquivalent property to true. For example, to define a bowl containing five identical

grapes we might write:

class Grape: Food 'green round grape*grapes*fruit' 'grape'
 "It's round and green. "
 isEquivalent = true
;

bowl: Container 'bowl*bowls' 'bowl'
;

+ Grape;
+ Grape;
+ Grape;
+ Grape;
+ Grape;

Then we’ll see the bowl described as containing five grapes (rather than “a grape, a
grape, a grape, a grape and a grape”), and players will be able to issue commands
like take a grape without the parser bothering them with a disambiguation prompt.
One thing to watch out for with equivalent objects is irregular plurals, when we’ll need
to override the pluralName property. For example, if we’re writing a game set on a

farm, and we’re defining an Ox class and a Sheep class with isEquivalent set to

true, we’d better define their pluralName properties as 'oxen' and 'sheep' so we don’t

end up with messages like “In the large field you see six oxes and eight sheeps.”

Even when objects are equivalent in this sense, the parser can distinguish them in
some cases; for example the player could refer to “a grape in the bowl” or “the grape

312

on the table” even when the grapes are otherwise identical. For more details on how
the parser distinguishes objects in this and other cases look up the distinguishers

property Of Thing and the Distinguisher class in the Library Reference Manual.

Before the parser distinguishes by location, it tries to distinguish by ownership. This
can be defined explicitly by setting the owner property (so that, for example, Bob’s

wallet remains Bob’s wallet even if Nancy steals it), or implicitly by location, (so that,
for example, a pen in Bob’s inventory can be referred to as Bob’s pen if it’s not
explicitly owned by anyone else). For more details look up the owner,

getNominalOwner() and canOwn(obj) properties on Thing in the Library Reference

Manual.

19.4 Fancier Output

We have already seen how we can use HTML tags to format the output of a game; for
example “...” to display text in bold, or “...”
to display text in red. But HTML-TADS can do a great deal more than that; in addition
to the other things we can do with HTML mark-up we can display pictures and play
sound. For details see the Introduction to HTML TADS.

A normal TADS 3 game window has two areas: the status line at the top, and the
main text area underneath. While this is both the traditional layout for works of IF and
also fine for most purposes, sometimes people want something a little different, for
example a special window to display graphics, or maybe windows to display the player
character’s current inventory or a list of commands. The TADS 3 Banner API lets us
divide the main game window up any way we like. It’s described in the “Banner
Window Display Model” chapter in Part VI of the System Manual, and many of the
functions used to control the Banner API are explained in the “tads-io Function Set”
chapter in Part IV of the System Manual. Using these functions to control a multi-
windowed output is not quite as simple as those two chapters may make it appear,
however; if you want to use the Banner API in your own game you should also read
the article on “Using the Banner API” in the TADS 3 Technical Manual and consider
using the CustomBannerWindow class, which is described in that articled and supplied

in customBanner.t extension which you should be able to find in the ../lib/extensions
file of your TADS 3 installation. Note, however, that the Banner API cannot be used
with games compiled for use with the web interface (see Section 19.9 below).

If you want to use any of these fancy output features (HTML mark-up, sound,
graphics, and banners) you need to be aware that not all TADS 3 interpreters may be
able to handle them (especially the TADS 3 interpreters available on non-Windows
systems). Your game therefore needs to test the capabilities of the interpreter it’s
running on and provide some suitable alternative for features a less capable
interpreter cannot support. For example, if your game displays a picture in response
to an examine command, it should also display a textual description on interpreters
that can’t cope with graphics. To determine what features the interpreter your game is

313

running on can support you can use the systemInfo() function, which is fully

described in the “tads-io Function Set” chapter in Part IV of the System Manual.

There are some thing we can do to improve the output of a TADS 3 game that don’t
much depend on the capabilities of particular interpreters. The textual output of a
TADS 3 game doesn’t get written straight to the screen; it’s buffered by something
called the transcript, which is basically a Vector of objects encapsulating the strings
that are due to be displayed. Of course these strings eventually are displayed, but not
before the library gets a chance to run through the transcript and tidy things up first.
This, for example, is the mechanism that gives us implicit action reports like “(first
unlocking the door, then opening it)” rather than a series of separate reports. With a
little bit of effort and ingenuity we can also intervene in the transcript to improve the
output of our game before it’s actually displayed. For example, instead of:

>east
Bob stands up.
Bob follows you out.

We could have:

>east
Bob stands up and follows you out.

Or instead of:
>take three coins
gold coin: Taken
gold coin: Taken
gold coin: Taken

We could have:

>take three coins
You take three gold coins.

For an explanation of how to achieve these effects, see the article on “Manipulating
the Transcript” in the TADS 3 Technical Manual (it’s worth pointing out, however, that
manipulating the transcript can be quite tricky, so you may want to get some
experience doing other things with TADS 3 before you attempt this). If you haven’t
already done so you should read the article on “Some Common Input/Output Issues”
in the Technical Manual. In particular you need to be aware that there are occasions
when your fancy output (or input) can be defeated by the text-buffering that the
transcript is performing. In such cases you need to deactivate the (text-buffering)
transcript before doing your fancy stuff and reactivate it afterwards, with a coding
pattern than typically looks like:

314

gTranscript.deactivate();
/* do fancy stuff here */
gTranscript.activate();

Another kind of output we may occasionally want to tweak is that from implicit action
reports. Most of the time what the library does is fine, but every now and then we
may feel we want to tweak something like “(first dropping the priceless antique vase)”
into “(first putting the priceless antique vase carefully down on the floor)”. To find out
how, see the article on “Implicit Action Reports” in the TADS 3 Technical Manual.

As we’ve seen the library changes two successive dashes into an en-dash and three
into an em-dash. This is great for producing nice-looking textual output, but can be
problematic if we actually want to see a run of dashes (for example, because we’re
trying to display some kind of diagram). The place where the library converts runs of
dashes is the typographicalOutputFilter, so if we need to disable this behaviour

from time to time to draw our diagrams, we can override it thus:

modify typographicalOutputFilter
 isActive = true
 activate() { isActive = true; }
 deactivate { isActive = nil; }
 filterText(ostr, val) { return isActive ? inherited(ostr, val) : val; }
;

The we can call typographicalOutputFilter.deactivate() before outputting our

dash-using diagram and typographicalOutputFilter.activate() afterwards.

Depending on the context we may also need to call gTranscript.deactivate() and

gTranscript.activate() before and after outputting our diagram.

Something simpler we can do to improve the appearance of out textual output is to
include the cquotes.t extension in our game build; this will convert all single straight
quote marks (') into curly quotes (’), or typographical quotation marks, if you prefer.
If we don’t do this we’ll either have to fill our textual output with lots of HTML entities
such as ’, which look a little ugly in source code and are tedious to type, or

define our own output tag, or put up with an ugly mixture of straight apostrophes in
our own messages and curly ones from the library messages, which will look quite
poor.

19.5 Changing Person, Tense, and Player Character

Interactive Fiction is normally narrated in the second person singular and the present
tense: “You are carrying a spade, a compass, and an old brown sack” or “You see
nothing of interest in the old brown sack.” But if we like we can change both the
person and the tense. In addition to second-person narration, TADS 3 allows narration
in either the first person (“I see nothing of interest in the old brown sack”) or the
third (“Martha sees nothing of interest in the old brown sack”). It’s also possible to
write a game in the past tense (“You saw nothing of interest in the old brown sack”),

315

or partly in the present and partly in the past (perhaps using the latter for
flashbacks).

To change to first-person or third-person narration is fairly straightforward; we just
need to override the pcReferralPerson property on the player character object

(typically called me). The default value is SecondPerson; for first-person narration we

simply change it to FirstPerson, and for third-person narration we change it to

ThirdPerson.

If we are using third-person narration there’s one more step we need to take: we
need to give the player character object a name by which he or she will be referred to,
for example:

me: Actor 'martha/woman*women' 'Martha'
 isProperName = true
 isHer = true
 pcReferralPerson = ThirdPerson
;

If we have written all our own action response messages in the form "{You/he}
turn{s} the handle" rather than "You turn the handle", then they will automatically
adapt to whichever person we use; we could even switch between first, second and
third-person narration in the course of the game and all our messages would
automatically adapt. This is one reason why it’s a good idea to get into the habit of
writing all our message using parameter substitution strings; if we do that and then
decide half way through the game that our seemingly cool idea for third-person
narrative isn’t working out so well after all, all we have to do is to change
pcReferralPerson; if we hadn’t used parameter substitutions we’d also have to go

back and change all our custom messages by hand .

Changing tense is also reasonably easy. If we want to narrate our entire game in the
past tense then all we need to do is to override gameMain.usePastTense to true

(which will take care of all the library messages) and then write all our own text in the
past tense. If we want to switch tenses during the course of our game, things get a
little more complicated. For details of how to handle this, see the article on "Writing a
Game in the Past Tense" in the TADS 3 Technical Manual.

If we want to change player character during the course of a game, we can do this
simply with the setPlayer(actor) function. For example, if we start out with me as

the player character, and later want to switch to Mary as the player character, we can
just call setPlayer(mary); we could subsequently call setPlayer(me) to switch back

to the original player character.

Actually, we probably need to do a bit more than that, since while setPlayer()

indeed changes the player character, it doesn’t give any indication to the player that it
has done so, so at the very least, we might want to display some text informing the
player about the switch; it would probably be a good idea to look around from the
perspective of the new player character too, e.g.:

316

setPlayer(mary);
"All of a sudden, you find you are Mary!\b";

 mary.lookAround(true);

Something else we can do is to add an indication in the status line that the player
character has changed; that’s often done by adding " (as so-and-so)" after the room
name. We can achieve that with the following modification to BasicLocation:

modify BasicLocation
 statusName(actor)
 {
 inherited(actor);
 if(actor != me)
 " (as <<actor.theNameFrom(actor.name)>>)";
 }
;

We have to use the rather convoluted actor.theNameFrom(actor.name) rather than

just actor.theName here otherwise we’d just see “(as you)” in the status line, which

wouldn’t be particularly informative.

One other thing we need to take care of once we start swapping the player character
around is the way the actor object in question is described when it’s the player
character, and when it’s an NPC (as it will be if the player character encounters it
when the player character is someone else). The Actor class defines the desc property

to show pcDesc when the Actor is the player character and npcDesc otherwise. For

NPCs that remain NPCs throughout the game it doesn’t really much matter whether
we define the desc property or the npcDesc property, since the end result will be the

same (though if we use a template to define an Actor we’re in fact defining the
npcDesc property), just as for a player character that remains a player character

throughout the game it makes no practical difference whether we define the desc

property or the pcDesc property; but if our game does allow the player character to

switch between actors, then the distinction between these properties becomes
relevant.

19.6 Making Use of Room Parts

Very early on we mentioned in passing that Rooms are defined with a number of room
parts. A Room comes with a defaultFloor, defaultCeiling, defaultEastWall,
defaultWestWall, defaultNorthWall and defaultSouthWall. An OutdoorRoom comes with
a defaultGround and a defaultSky. The room parts associated with an location are
stored in its roomParts property (which is thus a list of objects). This set up allows

these commonly use room part objects to be employed in multiple locations without
our having to create a separate set of objects for each location.

317

There are various ways in which we might want to customize room parts. Some rooms
may not have a complete set of room parts; for example, if we’re in the middle
section of a passage running from north to south there won’t be a north wall or a
south wall, so we might define:

passageMid: Room 'Long Passage'
 "This long passage continues to north and south. "
 north = passageN
 south = passageS
 roomParts = static inherited – defaultNorthWall – defaultSouthWall
;

Examining room parts will generally result in bland descriptions like “You see nothing
special about the north wall.” One way to change this for a particular location is to
define one or more special room parts for that location and use them in place of the
defaults, for example:

loungeNorthWall: defaultNorthWall
 desc = "The north wall is covered with chintzy wallpaper. "
;

lounge: Room 'Lounge'
 roomParts = static inherited – defaultNorthWall + loungeNorthWall
;

If, however, we’re then going to define a separate Decoration object to represent the
wallpaper, we needn’t also create a custom wall object. Instead we can make the
Decoration a RoomPartItem, associate it with the north wall, and then give it a

specialDesc which in effect describes the north wall:

+ RoomPartItem, Decoration 'chintzy green wallpaper' 'chintzy wallpaper'
 "It's a particularly vile shade of green. "
 specialNominalRoomPartLocation = defaultNorthWall
 specialDesc = "The north wall is covered with chintzy wallpaper. "
;

Examining the north wall will give the specialDescs of any objects associated with it
via the specialNominalRoomPartLocation property. These will appear in place of the

default non-description of the wall, so we effectively get a customized description of
the wall without having to use a new wall object.

We don’t have to make something a RoomPartItem to associate it with a particular
room part. Any thing in a room can have its specialNominalRoomPartLocation or its

initNominalRoomPartLocation set to one of that room’s room parts, and the object

will then be listed when the appropriate room part is examined. Making something a
RoomPartItem means that it will only be listed when its associated room part is
examined, and won’t also be listed in a room description. So, for example, if there’s a
picture hanging on the east wall, we can make it a RoomPartItem if we don’t want it
mentioned until the player examines the east wall, but we’d just make it an ordinary
Thing if we wanted it also mentioned in a room description; perhaps:

318

lounge: Room 'Lounge'
;

+ portrait 'picture/portrait*pictures portraits' 'portrait'
 "The portrait depicts a very stern-looking Victorian gentleman. "
 initSpecialDesc = "A portrait hangs on the east wall. "
 initNominalRoomPartLocation = defaultEastWall
;
In this case the portrait will be mentioned both in the room description and when the
east wall is examined, until the portrait is moved.

Normally room parts are fairly static things, but it’s possible that we may occasionally
need to remove or add room parts during the course of a game, for example if a wall
is demolished, or if a wall acts as a sliding partition that can be opened and closed. If
we need to add or remove room parts from a particular location we should call the
methods moveIntoAdd(room) or moveOutOf(room) on the room part in question.

It’s occasionally useful to determine which of a location’s room parts is the floor for
that room. To find that, we can use the roomFloor property of the location in question

(note this should be treated as a read-only property; to change the floor of a room we
need to manipulate the roomParts property).

For more details, look up RoomPart and RoomPartItem in the Library Reference
Manual. You might also want to look up the initNominalRoomPartLocation and
specialNominalRoomPartLocation properties on Thing.

19.7 Pathfinding and Timekeeping

There’s at least a couple of situations where it can be useful to have a game calculate
a path from one location to another on our game map. The first is where we want
NPCs to be able to find their way from A to B so they can go off on some errand, or
come looking for the player character, or do whatever else they need to do when it
involves their being in some place other than where they are now. The other is when
we want to implement a go to x command for the player, and we need to work out
how to get the player character from his/her current location to x. To do either of
these (or any related pathfinding jobs) we can use the pathfind.t extension which
should be in the ../lib/extensions directory under your main TADS 3 Author’s Kit
directory.

Perhaps a less common requirement is to have some way of relating the passing of
time (as measured by clocks, watches and other timepieces we actually implement as
game objects) to key events in our game. For example, if we want to arrange it so
that the significant meeting with Bob takes place at noon and the player character’s
arrival at the lighthouse occurs at 2 pm, and we’ve equipped our player character with
a watch, then we’ll probably need some means of having the time shown on the watch
advance from noon to 2 pm between these two events without reaching 2 pm until the
player character reaches the lighthouse. For this kind of purpose, you might want to
check out the subtime.t extension that’s also in the ../lib/extensions directory.

319

19.8 Coding Excursus 18

Although we’ve covered most of the coding topics needed for most of what you’re
likely to need to do in TADS 3, and although you can always find out about the rest by
reading the TADS 3 System Manual, there’s a couple more topics we should mention
in particular, if only to point out which other parts of the System Manual are most
worth studying.

19.8.1 Varying, Optional and Named Argument Lists

We talked about defining methods and functions very early on, but one thing we didn’t
mention is that both methods and functions can be defined to take a variable number
of arguments. There are two ways to define such a function or method. We can either
write:

myFunc(someArg, ...)
{
 /* code */
}

Or else

myFunc(someArg, [args])
{
 /* code */
}

Here either the ellipis (...) or the [args] parameter can be replaced with any number
of arguments (including none) when this function is called, so that any of the following
would be legal ways of calling myFunc():

myFunc(2);
myFunc(2, 'foobar');
myFunc(2, me, 3, 'ridiculous-looking pants');

And indeed, many other variants besides. If we use the ellipsis notation, then to
obtain the values of the arguments within the function or method we must use the
getArg(n) function, where n is the number of the argument we want to manipulate.

The number of arguments is then argcount. For example, with the third call to

myFunc() in the above example, argcount would be 4, getArg(1) would be 2,

getArg(2) would be me, getArg(3) would be 3, and getArg(4) would be 'ridiculous

looking pants'. If we use the second form, with [args] in place of the ellipsis (we can

use any name here, it doesn’t have to be ‘args’), then we can obtain the variable
arguments directly by looking at the args list within the function (or method); for

example in the same example arg[1] would be me, arg[2] would be 3, and arg[3]

would be 'ridiculous looking pants'.

320

We can use any number of fixed parameters (like someArg in the above example)

before the ellipsis or list notation, included no fixed parameters at all.

We can also send a list value to a function or method, as though the list were a series
of individual argument values. To do this, place an ellipsis after the list argument
value in the function or method call’s argument list:

local lst = [me, 3, 'sensible-looking shirt'];
myFunc(2, lst...);

This passes four arguments to myFunc(), not two.

For a fuller (and probably clearer) explanation of this, see the sections on “Varying
parameter lists” and “Varying-argument calls” in the chapter on “Procedural Code” in
Part III of the TADS 3 System Manual.

A related but not identical case is where we want a function or method to have
optional parameters. A varying argument list is one in which there can be any number
of parameters. With optional parameters, on the other hand, the number of
parameters is fixed, but some of them can be omitted when the method or function is
called. This can be particularly useful for parameters that usually take a default value
or which are commonly not used.

We define an optional parameter by following it with a question-mark (?) in the
argument list, for example:

truncate(str, len, upperCase?)
{

str = str.substr(1, len);
if(upperCase)

str = str.toUpper();
return str;

}

This returns a string that is str truncated to the first len characters and optionally

converted to upper case. If we don't want to convert the string to upper case, we
needn't supply the third parameter at all; the function could simply be called as:

 msg = truncate('The rain in Spain stays mainly in the plain', 16);

If an optional parameter is not used in a function or method call, its value at the start
of the function or method is nil. If we want it to default to some other value, we can
intialize it by following it with = plus the required default value, e.g.:

increment(x, y = 1)
 return x + y;
;

If this is called as increment(2) it will return 3; if it is called as increment(2, 2), it

will return 4.

321

The above examples have mixed compulsory and optional parameters. It's also
perfectly legal to have a function or method with only optional parameters (and no
compulsory ones), but where there is a mix of compulsory and optional parameters,
the compulsory ones must come first. For the full story on optional parameters see
the chapter on 'Optional Parameters' in Part III of the TADS 3 System Manual.

A final variation on the kinds of argument list we can create is named arguments. This
allows an argument to be passed by name instead of positionally. We indicate a names
argument by following its name with a colon. For example we could write:

truncate(str:, len:, upperCase:?)
{

str = str.substr(1, len);
if(upperCase)

str = str.toUpper();
return str;

}

Since the arguments are named, they don't need be listed in the same order when the
function or method is called. For example, we could call the above function with:

 local msg = truncate(len:6, upperCase: true, str: 'oranges and lemons');

For the full story on named arguments see the chapter on 'Named Arguments' in Part
III of the TADS 3 System Manual.

19.8.2 Regular Expressions

It’s possible to do quite a bit of string manipulation and matching with the ordinary
string methods, such as find() and findReplace(), and for certain purposes these

can be fine. For example, if we need to check whether the player’s command includes
the name ‘Nathaniel Weatherspoon’ and replace it with ‘nate’ we can perfectly well
convert it to lower case and use the find() method, e.g.

StringPreParser(str, which)
 doParsing(str, which)
 {
 if(str.toLower.find('nathaniel weatherspoon'))
 str = str.toLower.findReplace('nathaniel weatherspoon', 'nate',
 ReplacAll);

 return str;
 }
;

In more complex cases we may soon run up against the limitations of this method. For
example, if we wanted to test whether the player’s command contained any of the
prepositions 'at', 'in', 'on', or 'by', this would be much trickier, since we should not
only need to look for each of them individually, but also check that they were
occurring as a word in their own right, and not as part of some other word, such as

322

'attack' or 'indecent' or 'honest' or 'ruby'; simply surrounding them with spaces
wouldn’t work either, since them we’d miss any of these words if the occurred right at
the end beginning of the end of the string we were testing ('he wanted to pass them
by' or 'on the table is a brass bell'). For this kind of case we’re really far better off
searching with the aid of a regular expression such as:

rexSearch('<NoCase>%<(at|in|on|by)%>', str);

This will test whether any of 'at', 'in', 'on' or 'by' occur as separate words in str,

without worrying about whether they’re in upper or lower case.

At first sight, regular expressions look horrifyingly confusing creatures. At second and
third sight, they’re merely confusing (if we’re not used to them). But if we plan to do a
significant amount of string manipulation they’re worth getting to grips with sooner or
later. To find out about them, read the “Regular Expressions” chapter in Part IV of the
TADS 3 System Manual. Then read it again, and expect to have to refer to it
frequently until you become very familiar with regular expressions. And when you
start using regular expressions in your own code, start simple and don’t be too
disheartened if your first efforts don’t quite work as you expect. In the long term it is
worth getting to grips with these beasties.

19.8.3 LookupTable

There’s one other class we’ll briefly mention here, the LookupTable. This can be used

like a list or Vector, except that we can index it on any kind of value. We create a new
LookupTable in much the same way as we create a new Vector:

 myTab = new LookupTable();

Once the LookupTable has been created we can store and retrieve values in and from
it using arbitrary keys, for example:

 myTab['villain'] = bob;
 myTab[bob] = myrtle;
 myTab[[myrtle, 'mood']] = 'sad';

We can then retrieve these values with:

 local v1 = myTab['villain'];
 local v2 = myTab[bob];
 local v3 = myTab[[myrtle, 'mood'];
Following which v1, v2 and v3 would be bob, myrtle and 'sad' respectively. If we try to
assign a value to a key that already exists, we’ll simply override the key-value pair
with a new one. If we try to retrieve a value for a key that hasn’t been defined, we’ll
get the value nil.

For more details, see the chapter on LookupTable in Part IV of the TADS 3 System
Manual.

323

19.8.4 Multi-Methods

TADS 3 now has a feature called “multi-methods.” This implements a relatively new
object-oriented programming technique known as multiple dispatch, in which the
types of multiple arguments can be used to determine which of several possible
functions to call. The traditional TADS method call uses a single-dispatch system:
when we write x.foo(3), we’re invoking the method foo as defined on the object x, or

as inherited from the nearest superclass of x that defines that method. This is known
as single dispatch because a single value (x) controls the selection of which definition
of foo will be invoked. Multiple dispatch extends this notion so that multiple values can
be considered when selecting which method to invoke. For example, we could write
one version of a function putIn() that operates on a Thing and a Container, and

another version of the same function that operates on a Liquid and a Vessel, and the
system will automatically choose the correct version at run-time based on the types of
both arguments; e.g. (leaving a lot to the imagination):

putIn(Thing obj, Container cont)
{
 obj.moveInto(cont);
 "{You/he} put{[s]|} <<obj.theName>> into <<cont.theName>>";
}

putIn(Liquid liq, Vessel ves)
{
 local blk = liq.bulk;
 liq.bulk -= ves.getFreeBulk();
 if(liq.bulk <= 0)
 liq.moveInto(nil);
 vess.addLiquid(liq, blk);
 "{You/he} pour{s/ed} <<liq.theName>> into <<ves.theName>>. ";
}

For more details, see the chapter on Multi-Methods in Part III of the System Manual.

19.8.5 Modifying Code at Run-Time

Not only can we change the data held in a property at run-time (we’d hardly be able
to do much in TADS 3 if we couldn’t), as of TADS 3.1.0 we can also change the code
attached to methods. That is, we can assign a new method to an object property (and
also retrieve the method that’s attached to a property for use elsewhere). We do this
using the methods getMethod(prop) and setMethod(prop, meth), which we

encountered earlier in relation to double-quoted strings. For the full story on these
two methods see the chapter on TadsObject in Part IV of the TADS 3 System Manual.

In order to be able to do more than copy a method from one object property and
apply it to another, we need some means of defining a method which can later be
attached to a property. This can be done either as a floating method or as an
anonymous method.

324

A floating method is so called because it doesn’t belong to any particular object. We
can create it using the keyword method in much the same way that we create a

function. For example:

method describeMe
{
 if(ofKind(NonPortable))
 "\^<<theName>> is not the sort of thing you could carry
 around with you. ";
 else
 "It looks small enough to be carried. ";
}

This method could then be attached to, say, the desc property of an object using a
statement like:

 ballBearing.setMethod(&desc, describeMe);

An anonymous method is created in a way similar to that in which we’s create an
anonynous method, for example:

 local meth = method(obj, newCont) {
 gMessageParams(obj, newCont);
 if(obj.bulk > maxBulk)
 failCheck('{The obj/he} {is} too big to fit into {
 the newCont/him}. ');

 else
 "{The obj/he} {is} being inserted into {the newCont/him}. ";

 }

 blackBox.setMethod(¬ifyInsert, meth);

Note that in both cases the floating or anonymous method takes on the context of the
object to which it’s attached by setMethod. That is, the floating or anonymous method

can refer to self and to methods and properties of the self object (and can use

keywords such as inherited and delegated) and this will all work as expected in the

context of the object to which the anonymous/floating method has been attached.

One example of where this could be particularly useful is in setting up the methods of
an an object via its constructor. For example, the library defines a CustomRoomLister
class which allows prefix and suffix strings to be passed via its constructor. We could
go one better with a CustRoomLister class that allows prefix and suffix methods to be
passed via its constructor:

class CustRoomLister: Lister
 construct(prefixMeth, suffixMeth)
 {
 setMethod(&showListPrefixWide, prefixMeth);
 setMethod(&showListSuffixWide, suffixMeth);
 setMethod(&showListPrefixTall, prefixMeth);
 }
;

325

We could then pass the methods we want to use when we create the lister, for
example:

longPath: OutdoorRoom 'Path'
 "This long path goes nowhere in particular. There's a market just to the
 west. <<first time>>As paths go it's fairly futile.<<only>> There's a
 field to the east. "
 east = field
 west = startroom
 remoteRoomContentsLister(other)
 {
 return new CustRoomLister(
 method(itemCount, pov, parent) { "Lying around in <<parent.theName>>
 <<if itemCount > 1>>are<<else>>is<<end>> "; },
 method (itemCount, pov, parent) { ". ";});
 }
;

The above example incidentally shows that an anonymous method can be declared on
the fly withing a method or function call, just like an anonymous function. For further
details see the section on ‘Floating Methods’ in the chapter on ‘Procedural Code’, and
the section on ‘Anonymous Methods’ in the chapter on ‘Anonymous Functions’, both in
Part III of the Tads 3 System Manual.

If anonymous and floating methods don’t give you enough flexibility, you can go a
step or two further with yet another feature introduced in TADS version 3.1.0,
DynamicFunc. The DynamicFunc class lets you compile a string expression into
executable code at run-time (specifically, into a function which you can then call). This
string could, of course, be one that has been dynamically created elsewhere in your
code, allowing a TADS 3 game to write some of its own source code and then compile
it. For details, see the chapter on ‘DynamicFunc’ in Part IV of the TADS 3 System
Manual.

19.9 Compiling for Web-Based Play

Especially with the advent of tools like Parchment for Inform 7, there has been a
growing demand for the ability to play Interactive Fiction over the web, i.e. through
the player’s web browser without the player having to download either the game file
or an interpreter. Prior to version 3.1.0 this has not been possible for TADS 3 games,
but one of the major enhancements in TADS 3.1.0 was to allow TADS 3 games to be
compiled for web-based play (and, indeed, to act as web servers for other purposes
besides).

Full instructions for compiling and deploying a TADS 3 for playing on the web are
given in Section VII of the TADS 3 System Manual (‘Playing on the Web’), and so need
not be repeated here. A few points may be noted in passing, however.

First, a web-based game cannot use the Banner API (although it can display a
standard interpreter layout with a status line). So, if your game needs the Banner API,
you’ll have to compile and deploy it in the normal way (although to date, few if any

326

published TADS 3 games have made much use of the Banner API, if any). On the
other hand a web-based game has full access to the features of the browser on which
it’s played, including Javascript, CSS and HTML DOM, which are not available through
the standard HTML-TADS interpreter. This potentially allows a game author a great
deal more control over the interface presented to players.

Second, if you wish to use the standard interpreter layout with just a status line and
scrolling play area, it’s pretty straightforward to write a TADS 3 game which can then
be compiled in two versions, for playing via a traditional interpreter and for playing via
the web. To do this, it’s probably easiest to develop and test the traditional
interpreter-based version first, and then compile and deploy the web version once
you’re done (which just requires a few manual tweaks to the .t3m file).

Third, although there are very few compatibility issues when switching between the
web and traditional versions of a TADS 3 game that uses the standard interface
layout, there are one or two. The first is that the <ABOUTBOX> tag can’t be used in
the web-based version, which almost certainly renders the entire setAboutBox()
method redundant in the web version. Perhaps the easiest way to deal with this in a
game intended for both traditional and web-based play is to surround your
setAboutBox statement with #ifdef ... #endif conditional compilation statements thus:

gameMain: GameMainDef
#ifndef TADS_INCLUDE_NET
 setAboutBox()
 {
 "<ABOUTBOX>
 <<versionInfo.name>>\b
 <<versionInfo.byline>>\bVersion
 <<versionInfo.version>>\b
 <<versionInfo.htmlDesc>>
 </ABOUTBOX>";
 }
#endif

...
;

Actually, this is not strictly necessary in this case, since gameMain.setAboutBox() will

never be called from a game compiled for the web interface, and so leaving it in would
almost certainly be harmless. There may, however, be other parts of our code that we
want to work differently in the web based and traditional interpreter-based versions,
and this illustrates what is probably the neatest way of handling it.

Another compatibility issue you may run into is if the traditional version of your game
uses an identifier that’s used for a different purpose in the web-ui library. For
example, an early version of the web-ui library used ‘path’ as the name of a property.
Using ‘path’ as the name of an object (a room representing a path, perhaps) in game
code then resulted in series of error messages the game was complied for the web
version, even though the game worked fine in the traditional version. The solution was

327

to change the name of the offending identifier (in the case of ‘path’ we might change
it to ‘longPath’ for example) and then do a full recompile for debugging. A full
recompile for debugging may in any case be necessary when switching between the
traditional and web-based versions of the same game. (Note, by the time you read
this the web-ui libraries may have been changed to avoid the clash with the identifier
name ‘path’, so you may not encounter this particular incompatibility).

328

20 Where To Go From Here
If you’ve followed Learning TADS 3 this far, you’re well on your way to knowing all you
need to know to write your own games in TADS 3. “Knowing all you need to know” is
not, however, the same thing as committing the entire contents of this manual to
memory, let alone knowing all the ins and outs of every nook and cranny of the TADS
3 library and language; there’s probably no one in the known universe who has that
kind of knowledge. Knowing what you need to know is rather knowing enough to carry
out the tasks you commonly carry out in TADS 3 with ease, gradually becoming
familiar with the not-quite-so common features as you get to use them more, and
knowing where to look up the rest as and when you need it.

Even if you’ve managed to master the contents of this manual pretty thoroughly,
sooner rather than later you’ll come up against something you want to do that it
doesn’t cover. Just what this is will be different for every reader; it’s what your game
does that isn’t typical that’s likely to make it interesting, and no manual can hope to
cover all the atypical things game authors might like to do with TADS 3.

One place to look if you’re stuck on something fairly common is the article on “Where
Messages Come From” in the TADS 3 Technical Manual; this provides a short sample
transcript with notes explaining where the various parts of the transcript are
generated, often with links to more detailed documentation. One kind of problem that
can be especially frustrating is customizing or getting rid of bits of text that the library
displays from some less than immediately obvious place; the article on “Banishing
Awkward Messages” also from the Technical Manual, provides help with the most
common cases.

It may be, however, that your problem is of a very different kind. Depending on the
nature of what it is you’re trying to do, you should familiarize yourself with the parts
of the System Manual and Technical Manual we haven’t really touched on here. If you
think that what you’re up against hasn’t been explained properly anywhere and is
something other people might also like guidance on, consider submitting a request to
the TADS 3 Technical Manual Wish List (at http://www.tads.org/t3techlist.htm) (as
well, no doubt, as asking about your difficulty on rec-arts.int.fiction or http://www.int-
fiction.org).

At some point, again probably sooner rather than later, you are going to find that
there is going to be no substitute for delving deep into the TADS 3 Library Reference
Manual and trying to puzzle things out for yourself. Although we’ve tried to cover most
of the most commonly used properties and methods of the most commonly used
classes, it’s not possible to try to cover everything here without making this manual so
vast and dense that nobody could ever read it (or write it!). In any case, as soon as
you start moving beyond the basics it’s probably a good idea to start browsing the
Library Reference Manual to read more about the classes, objects and functions you
may be interested in. Almost however long you’ve been working with TADS 3 you’ll

http://www.int-fiction.org/
http://www.int-fiction.org/
http://www.tads.org/t3techlist.htm

329

probably discover something new!

If you have a multi-tabbed web browser, it’s a good idea to have the main parts of the
TADS 3 documentation set (System Manual, Technical Manual and Library Reference
Manual) open in separate tabs whenever you start working with TADS 3, so that
they’re instantly available when you need to look things up (which you will need to do
– frequently). Indeed, it’s often useful to have the Library Reference Manual open in
several tabs at once for when you want to jump round the library while keeping track
of where you’ve jumped from.

Another technique you can use if you’re using Workbench is to set break-points in the
debugger and step through the code to see what’s happening, though at some points
this may well feel more confusing than helpful, especially at first! The reasonably
detailed account of what happens when in the article on “The Command Execution
Cycle” in the Technical Manual may be of some help here, at least in suggesting where
a break point might usefully be set to track down whatever it is you’re looking for.

One final piece of advice: if you come up against something that you’re absolutely
stuck on, go away and try something else. Whether you’re still learning TADS 3 or
reasonably adept at it, you’ll occasionally come up against things that seem just too
hard or too complicated, but which later yield to renewed efforts once you come back
to them in the light of greater experience.

This manual has taken about you as far as an introductory manual can. From now on
the rest is up to you. In the meanwhile, if you find any inaccuracies, typos, glaring
omissions, or places where things are unclear or could be improved, do let me know
so that I can try to put them right for a future edition. I can be emailed on
eric.eve@hmc.ox.ac.uk .

Eric Eve

Harris Manchester College, Oxford

May 2012

mailto:eric.eve@ukf.net
mailto:eric.eve@hmc.ox.ac.uk

330

21 Alphabetical Index

A
AccompanyingState..............................218

accompanyTravel()...............................218

Achievement.......................................302

Action...103

activateState()....................................216

Actor..213

Actor States..215

actorAction().......................................206

ActorByeTopic......................................233

ActorHelloTopic.............................233, 237

actorInName.......................................281

actorInPrep...................................81, 281

Actors..213

actorStanding......................................106

ActorState..215

actorTravel().......................................208

addToAgenda().................................243p.

addToContents()..................................297

addToScore().......................................302

addToScoreOnce()................................302

addWord()..165

adventium..78

affinityFor()..76

afterAction()................................205, 216

afterActionMain().................................206

afterActionMainList...............................207

afterTravel().................................209, 216

AgendaItem..242

agendaList.......................................243p.

agendaOrder....................................243p.

aHref...49

All..96

allContents...64

allowedPostures...................................175

allStates...165

allVerbsAllowAll...................................154

AltTopic..223

Anonymous Functions...........................135

anonymous method..............................323

anonymous objects................................81

appendUnique()...................................145

argcount...319

arrivingWithDesc.................................218

asDobjFor()..98

asExit()..42

asIobjFor()...98

AskAboutForTopic.................................219

AskForTopic...219

AskTellAboutForTopic............................219

AskTellGiveShowTopic...........................219

AskTellShowTopic.................................219

AskTellTopic...219

AskTopic...219

Assignments...27

atmosphereList....................................142

Attachable..285

attachedObjects...................................286

attentionSpan......................................232

AutoClosingDoor....................................41

autoLockOnOpen.................................188

autoShowTopics()................................240

awardPoints()......................................302

awardPointsOnce()...............................302

B
BagOfHolding..76

Banner API..312

baseMoveInto()..............................67, 257

BasicChair...174

BasicContainer......................................75

Bed..172

331

beforeAction()..............................205, 216

beforeRunsBeforeCheck.................154, 205

beforeTravel()..............................207, 216

blockEndConv......................................240

Booth...172

BoredByeTopic.....................................233

bottomRoom...16

break..108, 110

brightness.....................................16, 161

brightnessOff......................................167

brightnessOn.......................................167

buildLocationList()...............................256

bulk...65

bulkCapacity..................................65, 179

BulkLimiter...66

burnDaemon().....................................169

burnLength...171

Button..191

ByeTopic...233

C
callAfterActionMain()............................207

callWithSenseContext().................244, 270

canAttachTo()......................................286

cancelCmdLineOnFailure................154, 202

CancelCommandLineException...............202

cancelIteration()..................................202

canDetachFrom().................................286

Candle..170

canEndConversation()..........................240

canFitObjThruOpening().........................66

cannotDetachMsgFor()..........................287

cannotGoThatWayInDark()....................163

cannotGoThatWayMsg............................16

cannotLockMsg....................................191

cannotMoveMsg.....................................32

cannotPutMsg..32

cannotTakeMsg......................................31

cannotUnlockMsg.................................191

canonicalizeSetting()............................194

canOwn()..312

canPutIn()..76

canReturnItem......................................75

case...108

catch..203

Chair..172

change player character........................315

Check...102

checkMoveThrough()............................275

checkPreCondition().............................106

CheckStatusFailure...............................275

checkThrowThrough()........................274p.

checkTouchThrough()...........................275

chooseStagingLocation()178

class..70

clearscreen().......................................157

closeWhen..301

cmdDict..165

coarseMesh...78

Collective..259

CollectiveGroup...................................260

collectiveGroups..................................261

CommandTopic....................................249

Comments..121

ComplexContainer.................................83

Component...32

connector...43

connectorMaterial................................272

construct()..129

Consultable...130

ConsultTopic..130

consumeFuel()169

Container...75

ContainerDoor.......................................86

Containers..60

contents...64

continue...110

ConvAgendaItem.................................245

332

Conversation Nodes.............................235

conversationManager...........................120

ConversationReadyState.......................231

Conversing..219

ConvNode...235

countOf() ...145

countWhich()146

createInstance()..................................129

curiositySatisfied.................................229

curSetting...194

curState...217

CustomBannerWindow..........................312

CustomFixture.......................................32

CustomRoomLister...............................282

CyclicEventList....................................138

D
Daemon..133

dangerous...101

DarkRoom.....................................15, 161

darkTravel()..163

dashes...314

dataType()..122

deactivateState().................................216

Decoration..32

default..108

Default...96

defaultCommandResponse()..................249

DefaultConsultTopic..............................130

defaultDistantDesc...............................278

defaultObscuredDesc().........................278

defaultPosture.....................................175

defaultReport()....................................105

defaultStagingLocation().......................178

DefaultTopic..224

DefaultWall...33

deferToEntry().....................................227

Defining New Actions............................111

DelayedAgendaItem.............................245

delegated...74

desc..267, 303

described..309

descWithoutSource..............................265

descWithSource...................................265

Dial..195

Dictionary...165

direct object..88

directions...13

disambigName.....................................311

disambigPromptOrder311

Disambiguation....................................310

discovered..25

Dispensable..260

Dispenser...75

display()...295

displayCount.......................................266

displaySchedule...................................266

DistanceConnector...............................273

Distant...32

distantDesc...279

distantInitSpecialDesc..........................280

distantSmellDesc.................................279

distantSoundDesc................................279

distantSpecialDesc...............................280

Distinguisher.......................................312

distinguishers......................................312

do ... while..109

dobjFor()..95

dobjFor(All)...96

dobjFor(Default)....................................96

dobjList..111

dobjMsg()...200

doOption()..159

Door..41

doorOpen..106

Doors...35

doParsing()...307

doScript()....................................137, 143

333

DynamicFunc.......................................325

E
embedded expressions.........................141

endConversation()...............................233

endsWith..39

Enterable..42

enteringRoom()...................................209

EntryPortal..42

enum...125

Enumerators.......................................125

escape characters..................................46

escortDest..218

EventList..137

eventOrder...135

eventPercent.......................................139

eventReduceAfter.................................139

eventReduceTo....................................139

Exception..203

excludeMatch......................................227

execAction()...94

execAfterMe..150

execBeforeMe......................................150

execute()..150

exit.......................................68, 102, 201

Exitable..43

exitAction...202

exitDestination....................................178

ExitOnlyPassage....................................41

ExitPortal..43

explainCannotAttachTo().......................287

ExternalEventList.................................139

F
facets...45

failCheck()..102

farewell response.................................233

feelDesc...263

filterResolveList().................................309

finally...204

find..39

fineMesh...78

finishGameMsg()..................................158

FinishOption..159

finishOptionAmusing............................159

FireSource..170

first-person narration...........................315

firstEvents..139

firstObj()..156

Fixture...31p.

Flashlight...............................24, 167, 193

floating method323

Floor..33

Floorless...15

FloorlessRoom.......................................15

Food..24

foreach...146

forEachInstance()................................156

FueledLightSource................................168

fuelSource..169

function pointer...................................123

Functions..23

Fuse...132

G
gAction...89, 91

gActionIn()...89

gActionIs()...89

gActor..89

GameID..155

gameMain.....................153, 202, 205, 304

GameMainDef......................................153

gDobj...89, 91

getActionMessageObj().........................198

getActor()....................................216, 244

getArg()...319

getBestMatch()....................................127

getBulk()..66, 76

getDropDestination()............................180

334

getEnteredVerbPhrase..........................177

getExtraScopeItems()..........................273

getExtraScopeItems()162

getFacets..45

getInstanceIn()...................................258

getItemText()......................................299

getMethod.....................................40, 323

getNearbyAttachmentLocs()..................290

getNestedRoomDest()..........................177

getNominalOwner()..............................312

getOutermostRoom................................64

getState...165

getSuperclassList()..............................123

getTopicText().....................................127

getUnique()...145

getWeight()..66

gIobj..89

GiveShowTopic....................................219

GiveTopic..219

glass..78

gLiteral...90

globalParamName................................214

Goal...298

goalState..299

goToSleep()..95

gPlayerChar..153

graphics..312

greeting protocols................................231

gReveal()..120

gRevealed().................................120, 223

gSetKnown().......................................118

gSetSeen()...117

gTopic..127

gTopicText...127

GuidedTourState..................................218

H
handleAttach()....................................287

handleDetach()....................................287

hasSeen()...117

header file..91

heading..295

HelloGoodbyeTopic...............................233

HelloTopic...233

hereWithoutSource..............................265

hereWithSource...................................265

HermitActorState.................................218

Hidden..25, 80

HiddenDoor...41

HighNestedRoom.................................182

Hint...299

HintLongTopicItem...............................298

HintMenu..298

Hints..297

hintText..299

horizontal tab..47

I
IAction...89

identical objects...................................311

Identifiers...121

if-nil operator..30

illogical...101

illogical().......................................99, 101

illogicalAlready()..................................101

illogicalNow()......................................101

illogicalSelf().......................................101

Immovable...31

ImpByeTopic..233

ImpHelloTopic......................................233

implicit action......................................106

implicit action reports...........................314

inaccessible()......................................101

include...91

InConversationState.............................231

inConvState..232

indexOf()..146

indexWhich().......................................146

335

indirect object.......................................88

IndirectLockable..................................190

Inheritance...17

inherited...69, 71

Initialization..150

initializeVocabWith().............................164

initialLocationClass...............................255

initiallyActive.......................................244

initiallyLocked................................76, 189

initiallyOpen....................................36, 76

initiateConversation().................236, 245p.

InitiateTopic..247

InitObject...150

initSpecialDesc...............................30, 280

inputKey()..157

inputLine()..158

inputManager......................................158

inRoomName()....................................281

instanceObject.....................................258

instructions menu................................297

Intangible...264

interpreters...312

Intrinsic Functions................................156

inventoryName....................................166

invokeItem()....................................243p.

iobjFor()...95

iobjFor(All)...96

iobjFor(Default).....................................96

iobjMsg()..200

isActive................................130, 222, 226

isActiveInMenu....................................298

isAmbient...266

isChapterMenu....................................295

isCollectiveAction()..............................261

isCollectiveFor()...................................259

isConversational..................................230

isDirectlyIn().................................63, 256

isDone...243p.

isEmanating..266

isEquivalent..311

isHeldBy()..63

isHer..213

isHim...213

isIn()..63, 256

isInInitState..280

isInitiallyIn().......................................255

isInitState...216

isKeyKnown()......................................189

isListedAsAttachedTo().........................287

isListedAsMajorFor().............................287

isLocked()...189

isMajorItemFor()..................................287

isMyKey()...190

isOccludedBy()....................................277

isOn...193

isOpen..36, 76

isOrIsIn()......................................63, 256

isPlayerChar().....................................210

isPlural...42

isProperName......................................213

isPulled...192

isReady..244

isStagingLocationKnown()178

isSticky...239

isValidSetting()....................................194

isWornBy()...63

ItemizingCollectiveGroup......................262

K
KeyedContainer..............................76, 187

KeyedLockable.....................................187

keyFitsLock().......................................190

keyIsPlausible(key)..............................190

keyList..187, 189

Keyring...190

keywordList...241

known...118, 126

knownKeyList...................................188p.

336

knownProp..118

knowsAbout()......................................118

L
LabeledDial...196

large..278

lastState...232

LeaveByeTopic.....................................233

leavingRoom().....................................208

length()..39, 144

Lever..192

lexicalParent...83

libGlobal...91

libScore..302

LightSource...167

lightSourceStateOff..............................165

lightSourceStateOn..............................165

limitSuggestions..................................240

Lister...81

listName...166

Lists...143

literal adjective....................................308

Literals and Datatypes..........................122

LiteralTAction..90

location..256

locationList ...255

Lockable...187

LockableContainer..........................76, 187

LockableWithKey..................................189

lockedDesc..189

lockStatusObvious........................189, 191

lockStatusReportable............................189

logical..101

logicalRank().......................................100

lookInDesc..264

LookupTable..322

Loops...108

lying...173

M
Macros...91

makeLit()..167

makeLocked().......................................76

makeLocked()189

makeOn()....................................167, 193

makeOpen..36

makeOpen()...76

makePosture()173

makePulled().......................................192

makeSetting().....................................194

masterObject...........................35, 43, 139

Matchbook..171

matchNameCommon().........................308

matchObj....................................130, 219

matchPat..241

matchPattern......................................130

matchScore...222

matchScoreAdjustment.........................226

Matchstick..171

material...78

max()...156

maxPoints...303

maxScore...304

maxSetting...195

maxSingleBulk...............................65, 179

maybeRemapTo()..................................97

medium..278

menuContents.....................................295

MenuItem...295

MenuLongTopicItem......................295, 298

menuOrder...297

Menus..295

message parameter strings...................114

Message Properties..............................198

MessageResult.....................................201

Methods...23

min() ..156

minBulk..76

337

minSetting..195

modify...73

morePrompt().....................................157

moveInto()..............................60, 67, 257

moveIntoAdd().............................257, 318

moveIntoForTravel().......................61, 250

moveOutOf()................................257, 318

moveWhileAttached()...........................287

Multi-Methods......................................323

MultiFaceted..258

MultiInstance......................................257

MultiLoc..255

MultiLoc template................................273

multiple dispatch.................................323

multiple inheritance...............................17

myItemClass ..75

N
name...................................228, 239, 241

named arguments................................321

NearbyAttachable................................289

nested objects.......................................82

nestedAction().....................................105

nestedActorAction().............................210

new..128

newActorAction().................................210

nextObj()..156

nextState..232

nilToList()...147

Noise..265

noLongerHere......................................266

NominalPlatform..................................181

nonObvious...101

NonPortable..30

noResponse...218

noteActive()..240

noteActiveReason()..............................240

noteLeaving()......................................240

notHereMsg..33

notifyInsert()68

notifyRemove().....................................67

notImportantMsg...................................32

NoTopic..235

NPC Agendas.......................................242

npcContinueList...................................239

npcContinueMsg..................................239

npcDesc..316

npcGreetingList............................237, 239

npcGreetingMsg...........................237, 240

NPCs..212

NumberedDial.....................................195

numbers as adjectives..........................308

O
obeyCommand()..................................248

objClosed..106

Object Resolution..............................306p.

objects...13

objHeld...106

objInPrep...80

objOpen...106

objUnlocked..106

objVisible..106

obscuredDesc()...................................279

obscuredInitSpecialDesc.......................280

obscuredSmellDesc()............................279

obscuredSoundDesc()...........................279

obscuredSpecialDesc............................280

obviousPostures...................................175

occludeObj().......................................277

Occluder...276

Odor..265

of..42

ofKind()..123

okaySetToMsgProp...............................194

onDesc...193

OneTimePromptDaemon.......................134

OnOffControl.......................................193

338

Openable..36

OpenableContainer................................76

openWhen..301

optional parameters.............................320

otherActor...245

otherSide..35

OutdoorRoom..15

OutOfReach...182

overriding...70

owner...312

P
paper...78

parameter..23

parse_name..308

Parsing...306

Passage..40

past tense...315

path...257

Pathfinding..318

PathPassage..41

pcDesc...316

pcReferralPerson..................................315

PermanentAttachment..........................291

PermanentAttachmentChild...................291

Person..65, 213

Platform...172

playerActionMessages...........................198

PlugAttachable.....................................291

plural...42

pluralName...311

pluralOrder...311

plus notation...62

Postures...173

Pre-Initialization..................................150

Precondition..105

PreCondition..106

PreinitObject.......................................150

preprocessor...91

PresentLater...25

PromptDaemon....................................134

properties...13

property pointer.............................84, 123

Propertysets...93

propType()..123

R
rand() ...157

RandomEventList.................................138

RandomFiringScript..............................139

randomize()..157

rank...304

Readable..24

readDesc..24

RearContainer.......................................79

RearSurface..80

referencedGoals...................................299

reInitializeLocation()............................257

Remap...96

remapTo()..97

rememberKnownKeys...........................189

remoteDesc()......................................279

remoteInitSpecialDesc().......................280

remoteRoomContentsLister().................282

remoteSpecialDesc()............................280

removeEvent()....................................132

removeFromNested()175

removeMatchingEvents()......................132

removeWord().....................................165

replace...75

replaceAction()....................................105

reportFailure().....................................102

resetItem()...244

resolve list ...309

ResolvedTopic......................................127

restoreLocation().................................257

RestrictedContainer................................76

RestrictedRearContainer.........................80

339

RestrictedRearSurface............................80

RestrictedSurface..................................79

RestrictedUnderside...............................80

return..24

revealHiddenItems.................................66

Revealing..120

Room Parts...316

roomAfterAction()................................205

roomBeforeAction()..............................205

roomDarkDesc.............................161, 180

roomDarkName............................161, 180

roomDarkTravel().................................163

roomFloor...318

roomName..12

RoomPart...33

RoomPartItem.....................................317

roomParts...316

Rooms..12

runOrder...307

S
saveLocation(......................................257

say() ...37

sayArriving().......................................252

sayBurnedOut()...................................169

sayDeparting()....................................252

scope...310

scoreCount..303

scoreRankTable....................................304

scriptedTravelTo()................................250

SecretDoor...41

SecretFixture..33

seen...26, 117

seenProp..117

Sense...263

senseAmbientMax().............................162

SenseConnector...................................272

SenseDaemon.....................................134

SenseFuse..133

SensoryEmanation...............................265

SensoryEvent......................................268

setAboutBox..326

setAboutBox()..............................154, 326

setConvNode()....................................236

setConvNodeReason()..........................236

setCurState()......................................217

setHasSeen()......................................117

setKnowsAbout().................................118

setMethod.....................................38, 323

setPlayer()..315

setRevealed()......................................120

setSuperclassList()...............................123

Settable..194

setToInvalidMsgProp.............................194

Shipboard...15

ShipboardRoom.....................................15

showGoodbye()...................................154

showIntro()...153

showScoreRankMessage().....................304

ShowTopic...219

ShuffledEventList.................................138

ShuffledList...143

shuffleFirst..139

sight..263

SightEvent..268

SightObserver.....................................268

sightPresence......................................264

sightSize...278

SimpleAttachable.................................292

SimpleNoise.................................265, 267

SimpleOdor..................................265, 267

SingleContainer.....................................76

singleDobj...111

singleTopic..127

sitting...173

small..278

smart quotes...47

smell..263

340

smellDesc....................................263, 279

SmellEvent..268

SmellObserver.....................................268

smellPresence.....................................264

smellSize...278p.

sound...263

soundDesc...................................263, 279

SoundEvent..268

SoundObserver....................................268

soundPresence....................................264

soundSize..278p.

sourceDesc...265

SpaceOverlay..80

special characters..................................46

specialDesc............................30, 216, 280

specialNominalRoomPartLocation...........317

SpecialTopic.................................235, 241

spelling correction................................307

SpringLever..193

stagingLocations..................................182

Stairway...40

StairwayDown.......................................40

StairwayUp...40

standing...173

stateAfterEscort...................................218

stateDesc..216

stateTokens...165

static..149, 151

Static Property Initialization..................151

StopEventList......................................138

StretchyContainer..................................76

StringPreParser....................................307

strings..37

Strings...46

sublist()..147

subLocation..84

subset()..147

substr..39

SuggestedNoTopic................................235

SuggestedTopics..................................228

SuggestedTopicTree..............................230

SuggestedYesTopic...............................235

Surface..79

Switch..193

Switch Statement................................107

SyncEventList......................................138

systemInfo().......................................313

systemInfo()157

T
TAction...89

takeTurn()...217

tasteDesc..263

TCommand...250

TellTopic..219

template..............................12, 20, 33, 43

templates...13

tense..315

text-buffering......................................313

Thing...20

ThingState..165

third-person narration..........................315

ThroughPassage....................................41

throw...203

throwing things...................................274

TIAction...89

Timekeeping.......................................318

timesToSuggest...................................229

title..295

toInteger()..157

token pasting..92

Tokenizer..306

toList() ..149

toLower()...39

tooDistantMsg.......................................32

TopHintMenu.......................................297

Topic Entries..219

TopicAction..127

341

TopicGroup..226

topicResponse..............................130, 220

Topics...126

TopicTAction...................................90, 127

toString()...157

totalPoints...303

totalScore ..302

touch...263

touchObj...106

touchPresence.....................................264

touchSize..278

toUpper()...39

TourGuide...218

transcript.....................................158, 313

transSensingThru()..............................272

TravelConnector...................................163

TravelConnectorLink...............................42

travelDesc()..143

travelDesc()207

traveler..181

travelerArriving().................................209

travelerLeaving().................................208

TravelMessage.....................................143

TravelMessageHandler..........................252

travelTo()..251

travelWhileAttached()288

triggerEvent().....................................268

try...203

tryMovingIntoNested()175

tryRemovingFromNested()....................175

typo correction....................................307

typographicalOutputFilter,.....................314

U
Underside...79

Unicode..47

UntakeableActor..................................213

Unthing..33

usePastTense...............................154, 315

V
validContents..76

validSettings.......................................196

valWhich() ...146

Vaporous..264

Varying, Optional and Named Argument
Lists...319

Vectors...143

Vehicle...181

VehicleBarrier......................................181

verbPhrase..112

VerbRule() ...111

Verify...99

verifyPreCondition()106

versionInfo..155

vocabLikelihood...................................310

vocabWords...............20, 42, 126, 164, 307

W
Wearable..24

weight..65

weightCapacity......................................65

while..109

wornName..166

Y
YesTopic..235

.

.reveal..120

+
+ notation..62

<
<ABOUTBOX> tag...............................326

	1 Introduction
	1.1 The Aim and Purpose of this Manual
	1.2 What You Need to Know Before You Start
	1.3 Feedback and Acknowledgements

	2 Map-Making – Rooms
	2.1 Rooms
	2.2 Coding Excursus 1: Defining Objects
	2.3 Different Kinds of Room
	2.4 Coding Excursus 2 – Inheritance
	2.5 Two Other Properties of Rooms

	3 Putting Things on the Map
	3.1 The Root of All Things
	3.2 Coding Excursus 3 – Methods and Functions
	3.3 Some Other Kinds of Thing
	3.4 Coding Excursus 4 – Assignments and Conditions
	3.5 Fixtures and Fittings

	4 Doors and Connectors
	4.1 Doors
	4.2 Coding Excursus 5 – Two Kinds of String
	4.3 Other Kinds of Physical Connector
	4.4 Coding Excursus 6 – Specials Things to Put in Strings
	4.5 TravelConnectors

	5 Containment
	5.1 Containers and the Containment Hierarchy
	5.1.1 The Containment Hierarchy
	5.1.2 Moving Objects Around the Hierarchy
	5.1.3 Defining the Initial Location of Objects
	5.1.4 Testing for Containment
	5.1.5 Containment and Class Definitions
	5.1.6 Bulk, Weight and Container Capacity
	5.1.7 Items Hidden in Containers
	5.1.8 Notifications

	5.2 Coding Excursus 7 – Overriding and Inheritance
	5.3 In, On, Under, Behind
	5.3.1 Kinds of Container
	5.3.2 Container Materials
	5.3.3 Other Kinds of Containment

	5.4 Coding Excursus 8 – Anonymous and Nested Objects
	5.5 Complex Containers

	6 Actions
	6.1 Taxonomy of Actions
	6.2 Coding Excursus 9 – Macros and Propertysets
	6.2.1 Macros
	6.2.2 Propertysets

	6.3 Customizing Action Behaviour
	6.3.1 Actions Without Objects
	6.3.2 Actions With Objects
	6.3.3 Stages of an Action
	6.3.4 Remap
	6.3.5 Verify
	6.3.6 Check
	6.3.7 Action
	6.3.8 Precondition

	6.4 Coding Excursus 10 – Switching and Looping
	6.4.1 The Switch Statement
	6.4.2 Loops

	6.5 Defining New Actions

	7 Knowledge
	7.1 Seen and Known
	7.1.1 Tracking What Has Been Seen
	7.1.2 Tracking What Is Known
	7.1.3 Revealing

	7.2 Coding Excursus 11 – Comments, Literals and Datatypes
	7.2.1 Comments
	7.2.2 Identifiers
	7.2.3 Literals and Datatypes
	7.2.4 Determining the Datatype (and Class) of Something
	7.2.5 Property and Function Pointers
	7.2.6 Enumerators

	7.3 Topics
	7.4 Coding Excursus 12 – Dynamically Creating Objects
	7.5 Consultables

	8 Events
	8.1 Fuses and Daemons
	8.2 Coding Excursus 13 – Anonymous Functions
	8.3 EventLists
	8.4 Coding Excursus 14 – Lists and Vectors
	8.5 Initialization and Pre-initialization
	8.5.1 Initialization
	8.5.2 Pre-Initialization
	8.5.3 Static Property Initialization

	9 Beginnings and Endings
	9.1 GameMainDef
	9.2 Version Info
	9.3 Coding Excursus 15 – Intrinsic Functions
	9.4 Ending a Game

	10 Darkness and Light
	10.1 Dark Rooms and Light Levels
	10.2 Coding Excursus 16 – Adjusting Vocabulary
	10.2.1 Adding Vocabulary the Easy Way
	10.2.2 Dictionary
	10.2.3 ThingState

	10.3 Sources of Light

	11 Nested Rooms
	11.1 Types and Characteristics of NestedRoom
	11.2 Nested Rooms and Postures
	11.3 Nested Rooms in Complex Containers
	11.4 Staging Locations
	11.5 Other Features of Nested Rooms
	11.5.1 Nested Rooms and Bulk
	11.5.2 Dropping Things in Nested Rooms
	11.5.3 Enclosed Nested Rooms

	11.6 Special Kinds of Nested Room
	11.7 Nested Rooms and OutOfReach

	12 Locks and Other Gadgets
	12.1 Locks and Keys
	12.1.1 Lockable
	12.1.2 KeyedLockable
	12.1.3 Keyring
	12.1.4 IndirectLockable

	12.2 Control Gadgets
	12.2.1 Buttons, Levers and Switches
	12.2.2 Controls With Multiple Settings

	13 More About Actions
	13.1 Message Properties
	13.2 Stopping Actions
	13.3 Coding Excursus 17 – Exceptions and Error Handling
	13.4 Reacting to Actions
	13.5 Reacting to Travel
	13.6 NPC Actions

	14 Non-Player Characters
	14.1 Introduction to NPCs
	14.2 Actors
	14.3 Actor States
	14.4 Conversing with NPCs – Topic Entries
	14.5 Suggesting Topics of Conversation
	14.6 Hello and Goodbye – Greeting Protocols
	14.7 Conversation Nodes
	14.8 NPC Agendas
	14.9 Making NPCs Initiate Conversation
	14.10 Giving Orders to NPCs
	14.11 NPC Travel
	14.12 Afterword

	15 MultiLocs and Collectives
	15.1 MultiLocs
	15.2 Collectives
	15.3 CollectiveGroups

	16 Senses and Sensory Connections
	16.1 The Five Senses
	16.2 Vaporous and Intangible
	16.3 Sensory Emanations
	16.4 Sensory Events
	16.5 Sensory Connections
	16.6 The DistanceConnector
	16.7 The Occluder
	16.8 Describing Things in Remote Locations
	16.8.1 Obscured, Remote and Distant Descriptions
	16.8.2 Distant, Obscured and Remote Object Listings

	17 Attachables
	17.1 The Attachable Framework
	17.2 NearbyAttachable
	17.3 Other Kinds of Attachable
	17.3.1 PlugAttachable
	17.3.2 PermanentAttachment
	17.3.3 SimpleAttachable

	18 Menus, Hints and Scoring
	18.1 Menus
	18.2 Hints
	18.3 Scoring

	19 Beyond the Basics
	19.1 Introduction
	19.2 Parsing and Object Resolution
	19.2.1 Tokenizing and Preparsing
	19.2.2 Object Resolution

	19.3 Similarity, Disambiguation and Difference
	19.4 Fancier Output
	19.5 Changing Person, Tense, and Player Character
	19.6 Making Use of Room Parts
	19.7 Pathfinding and Timekeeping
	19.8 Coding Excursus 18
	19.8.1 Varying, Optional and Named Argument Lists
	19.8.2 Regular Expressions
	19.8.3 LookupTable
	19.8.4 Multi-Methods
	19.8.5 Modifying Code at Run-Time

	19.9 Compiling for Web-Based Play

	20 Where To Go From Here
	21 Alphabetical Index

